skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on Li5Sb2P5O18 by Materials Project

Dataset ·
DOI:https://doi.org/10.17188/1201197· OSTI ID:1201197

Li5Sb2P5O18 crystallizes in the triclinic P-1 space group. The structure is three-dimensional. there are five inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded in a 4-coordinate geometry to five O2- atoms. There are a spread of Li–O bond distances ranging from 2.04–2.74 Å. In the second Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share a cornercorner with one SbO6 octahedra, a cornercorner with one LiO5 square pyramid, and corners with four PO4 tetrahedra. The corner-sharing octahedral tilt angles are 77°. There are a spread of Li–O bond distances ranging from 1.95–2.07 Å. In the third Li1+ site, Li1+ is bonded to five O2- atoms to form LiO5 square pyramids that share a cornercorner with one LiO4 tetrahedra, corners with five PO4 tetrahedra, and an edgeedge with one SbO6 octahedra. There are a spread of Li–O bond distances ranging from 2.08–2.30 Å. In the fourth Li1+ site, Li1+ is bonded in a 5-coordinate geometry to five O2- atoms. There are a spread of Li–O bond distances ranging from 2.05–2.72 Å. In the fifth Li1+ site, Li1+ is bonded in a 4-coordinate geometry to four O2- atoms. There are a spread of Li–O bond distances ranging from 2.01–2.07 Å. There are two inequivalent Sb3+ sites. In the first Sb3+ site, Sb3+ is bonded in a 6-coordinate geometry to six O2- atoms. There are a spread of Sb–O bond distances ranging from 2.07–2.82 Å. In the second Sb3+ site, Sb3+ is bonded to six O2- atoms to form distorted SbO6 octahedra that share a cornercorner with one LiO4 tetrahedra, corners with six PO4 tetrahedra, and an edgeedge with one LiO5 square pyramid. There are a spread of Sb–O bond distances ranging from 2.10–2.59 Å. There are five inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one LiO5 square pyramid, a cornercorner with one LiO4 tetrahedra, and a cornercorner with one PO4 tetrahedra. There are a spread of P–O bond distances ranging from 1.52–1.61 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one SbO6 octahedra, corners with two equivalent LiO5 square pyramids, a cornercorner with one PO4 tetrahedra, and corners with two equivalent LiO4 tetrahedra. The corner-sharing octahedral tilt angles are 53°. There are a spread of P–O bond distances ranging from 1.52–1.61 Å. In the third P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one SbO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedral tilt angles are 50°. There are a spread of P–O bond distances ranging from 1.52–1.61 Å. In the fourth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one SbO6 octahedra, a cornercorner with one LiO5 square pyramid, and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedral tilt angles are 60°. There are a spread of P–O bond distances ranging from 1.51–1.65 Å. In the fifth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three equivalent SbO6 octahedra, a cornercorner with one LiO5 square pyramid, and a cornercorner with one LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 47–58°. There are a spread of P–O bond distances ranging from 1.53–1.59 Å. There are eighteen inequivalent O2- sites. In the first O2- site, O2- is bonded in a distorted rectangular see-saw-like geometry to three Li1+ and one P5+ atom. In the second O2- site, O2- is bonded in a 1-coordinate geometry to one Li1+, one Sb3+, and one P5+ atom. In the third O2- site, O2- is bonded in a distorted bent 120 degrees geometry to two P5+ atoms. In the fourth O2- site, O2- is bonded in a 3-coordinate geometry to two Li1+, one Sb3+, and one P5+ atom. In the fifth O2- site, O2- is bonded in a trigonal planar geometry to two Li1+ and one P5+ atom. In the sixth O2- site, O2- is bonded in a distorted tetrahedral geometry to three Li1+ and one P5+ atom. In the seventh O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one Sb3+, and one P5+ atom. In the eighth O2- site, O2- is bonded in a 3-coordinate geometry to two equivalent Li1+, one Sb3+, and one P5+ atom. In the ninth O2- site, O2- is bonded in a 3-coordinate geometry to two Li1+ and one P5+ atom. In the tenth O2- site, O2- is bonded in a distorted bent 120 degrees geometry to one Sb3+ and one P5+ atom. In the eleventh O2- site, O2- is bonded in a 1-coordinate geometry to one Sb3+ and one P5+ atom. In the twelfth O2- site, O2- is bonded in a distorted bent 120 degrees geometry to one Li1+, one Sb3+, and one P5+ atom. In the thirteenth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one Sb3+, and one P5+ atom. In the fourteenth O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one Sb3+, and one P5+ atom. In the fifteenth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one Sb3+, and one P5+ atom. In the sixteenth O2- site, O2- is bonded in a 1-coordinate geometry to two Li1+, one Sb3+, and one P5+ atom. In the seventeenth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one Sb3+, and one P5+ atom. In the eighteenth O2- site, O2- is bonded in a bent 120 degrees geometry to two P5+ atoms.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Contributing Organization:
MIT; UC Berkeley; Duke; U Louvain
DOE Contract Number:
AC02-05CH11231; EDCBEE
OSTI ID:
1201197
Report Number(s):
mp-26585
Resource Relation:
Related Information: https://materialsproject.org/citing
Country of Publication:
United States
Language:
English

Similar Records

Materials Data on Li3Sb2(PO4)3 by Materials Project
Dataset · Fri May 29 00:00:00 EDT 2020 · OSTI ID:1201197

Materials Data on Li6MnSb3(PO4)6 by Materials Project
Dataset · Thu Apr 30 00:00:00 EDT 2020 · OSTI ID:1201197

Materials Data on Li3Sb2P5O18 by Materials Project
Dataset · Wed Apr 29 00:00:00 EDT 2020 · OSTI ID:1201197