skip to main content

Title: Creep-Fatigue Behavior of Alloy 617 at 850°C

Creep-fatigue deformation is expected to be a significant contributor to the potential factors that limit the useful life of the Intermediate Heat Exchanger (IHX) in the Very High Temperature Reactor (VHTR) nuclear system.[1] The IHX of a high temperature gas reactor will be subjected to a limited number of transient cycles due to start-up and shut-down operations imparting high local stresses on the component. This cycling introduces a creep-fatigue type of interaction as dwell times occur intermittently. The leading candidate alloy for the IHX is a nickel-base solid solution strengthened alloy, Alloy 617, which must safely operate near the expected reactor outlet temperature of up to 950 °C.[1] This solid solution strengthened nickel-base alloy provides an interesting creep-fatigue deformation case study because it has characteristics of two different alloy systems for which the cyclic behavior has been extensively investigated. Compositionally, it resembles nickel-base superalloys, such as Waspalloy, IN100, and IN718, with the exception of its lower levels of Al. At temperatures above 800 °C, the microstructure of Alloy 617, however, does not contain the ordered ?’ or ?’’ phases. Thus microstructurally, it is more similar to an austenitic stainless steel, such as 316 or 304, or Alloy 800H comprised ofmore » a predominantly solid solution strengthened matrix phase with a dispersion of inter- and intragranular carbides. Previous studies of the creep-fatigue behavior of Alloy 617 at 950 °C indicate that the fatigue life is reduced when a constant strain dwell is added at peak tensile strain.[2-5] This results from the combination of faster crack initiation occurring at surface-connected grain boundaries due to oxidation from the air environment along with faster, and intergranular, crack propagation resulting from the linking of extensive interior grain boundary cracking.[3] Saturation, defined as the point at which further increases in the strain-controlled hold time duration no longer decreases the cycle life, has been observed for Alloy 617 at 950 °C at least to the investigated hold times[2,3], as illustrated through a plot of cycles to failure v. hold time in Figure 1. The 950 °C creep-fatigue data set generated by Totemeier and Tian[5] at the 0.3% and 1.0% strain range is consistent in magnitude in terms of the cycles to failure data of that of Carroll et al., however, 0.3% strain range data did not exhibit saturation at hold times of up to 10 min. At 1.0% total strain, saturation in the number of cycles to failure was observed within the investigated peak tensile hold times of up to 10 min[5]. The data of Carroll et al.[2,3] in Figure 1 and Totemeier and Tian[5] is also consistent in magnitude with the data of Rao and coworkers[4] investigated at the 0.6% strain range. It should be noted that saturation in the number of cycles to failure is not present in the data published by Rao and coworkers[4] for tensile hold times of up to 120 min. The latter testing was in a simulated primary-circuit helium gas as opposed to air and a single data point is reported for the longer hold time conditions.« less
  1. Idaho National Lab. (INL), Idaho Falls, ID (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Idaho National Laboratory (INL), Idaho Falls, ID (United States)
Sponsoring Org:
USDOE Office of Nuclear Energy (NE)
Country of Publication:
United States
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS Alloy 617; Creep-Fatigue; Intermediate Heat Exchanger (IHX); Very High Temperature Reactor (VHTR)