skip to main content

Title: Kinetic Simulations of Particle Acceleration at Shocks

Collisionless shocks are mediated by collective electromagnetic interactions and are sources of non-thermal particles and emission. The full particle-in-cell approach and a hybrid approach are sketched, simulations of collisionless shocks are shown using a multicolor presentation. Results for SN 1006, a case involving ion acceleration and B field amplification where the shock is parallel, are shown. Electron acceleration takes place in planetary bow shocks and galaxy clusters. It is concluded that acceleration at shocks can be efficient: >15%; CRs amplify B field via streaming instability; ion DSA is efficient at parallel, strong shocks; ions are injected via reflection and shock drift acceleration; and electron DSA is efficient at oblique shocks.
 [1] ;  [2]
  1. Princeton University
  2. Los Alamos National Laboratory
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: Plasma Energization: Exchanges Between Fluid and Kinetic Scales ; 2015-05-04 - 2015-05-06 ; Los Alamos, New Mexico, United States, Melbourne (Australia), 19-25 Apr 2015
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
Princeton University
Country of Publication:
United States
79 ASTRONOMY AND ASTROPHYSICS; Astronomy and Astrophysics