skip to main content

SciTech ConnectSciTech Connect

Title: Determination of the Proton's Weak Charge via Parity Violating Electron Scattering

The Qweak experiment, which completed running in May of 2012 at Jefferson Laboratory, has measured the parity-violating asymmetry in elastic electron-proton scattering at four-momentum transfer Q2=0.025 (GeV/c)2 in order to provide the first direct measurement of the proton's weak charge, Qpw. The Standard Model makes firm predictions for the weak charge; deviations from the predicted value would provide strong evidence of new physics beyond the Standard Model. Using an 89% polarized electron beam at 145 microA scattering from a 34.4 cm long liquid hydrogen target, scattered electrons were detected using an array of eight fused-silica detectors placed symmetric about the beam axis. The parity-violating asymmetry was then measured by reversing the helicity of the incoming electrons and measuring the normalized difference in rate seen in the detectors. The low Q2 enables a theoretically clean measurement; the higher order hadronic corrections are constrained using previous parity-violating electron scattering world data. The experimental method will be discussed, with recent results constituting 4% of our total data and projections of our proposed uncertainties on the full data set.
Authors:
 [1]
  1. College of William and Mary, Williamsburg, VA (United States)
Publication Date:
OSTI Identifier:
1195950
Report Number(s):
JLAB-PHY--15-2105; DOE/OR/23177--3472
DOE Contract Number:
AC05-06OR23177
Resource Type:
Thesis/Dissertation
Research Org:
Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS