skip to main content

Title: A Many-Task Parallel Approach for Multiscale Simulations of Subsurface Flow and Reactive Transport

Continuum-scale models have long been used to study subsurface flow, transport, and reactions but lack the ability to resolve processes that are governed by pore-scale mixing. Recently, pore-scale models, which explicitly resolve individual pores and soil grains, have been developed to more accurately model pore-scale phenomena, particularly reaction processes that are controlled by local mixing. However, pore-scale models are prohibitively expensive for modeling application-scale domains. This motivates the use of a hybrid multiscale approach in which continuum- and pore-scale codes are coupled either hierarchically or concurrently within an overall simulation domain (time and space). This approach is naturally suited to an adaptive, loosely-coupled many-task methodology with three potential levels of concurrency. Each individual code (pore- and continuum-scale) can be implemented in parallel; multiple semi-independent instances of the pore-scale code are required at each time step providing a second level of concurrency; and Monte Carlo simulations of the overall system to represent uncertainty in material property distributions provide a third level of concurrency. We have developed a hybrid multiscale model of a mixing-controlled reaction in a porous medium wherein the reaction occurs only over a limited portion of the domain. Loose, minimally-invasive coupling of pre-existing parallel continuum- and pore-scale codes hasmore » been accomplished by an adaptive script-based workflow implemented in the Swift workflow system. We describe here the methods used to create the model system, adaptively control multiple coupled instances of pore- and continuum-scale simulations, and maximize the scalability of the overall system. We present results of numerical experiments conducted on NERSC supercomputing systems; our results demonstrate that loose many-task coupling provides a scalable solution for multiscale subsurface simulations with minimal overhead.« less
; ; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: 7th Workshop on Many-Task Computing on Clouds, Grids, and Supercomputers (MTAGS 2014), November 16, 2014, New Orleans, Louisiana
ACM , New York, NY, United States(US).
Research Org:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org:
Country of Publication:
United States
high performance computing; many-task computing; hybrid multiscale modeling; reactive transport