skip to main content

Title: Scaling Graph Community Detection on the Tilera Many-core Architecture

In an era when power constraints and data movement are proving to be significant barriers for the application of high-end computing, the Tilera many-core architecture offers a low-power platform exhibiting many important characteristics of future systems, including a large number of simple cores, a sophisticated network-on-chip, and fine-grained control over memory and caching policies. While this emerging architecture has been previously studied for structured compute-intensive kernels, benchmarking the platform for data-bound, irregular applications present significant challenges that have remained unexplored. Community detection is an advanced prototypical graph-theoretic operation with applications in numerous scientific domains including life sciences, cyber security, and power systems. In this work, we explore multiple design strategies toward developing a scalable tool for community detection on the Tilera platform. Using several memory layout and work scheduling techniques we demonstrate speedups of up to 46x on 36 cores of the Tilera TileGX36 platform over the best serial implementation, and also show results that have comparable quality and performance to mainstream x86 platforms. To the best of our knowledge this is the first work addressing graph algorithms on the Tilera platform. This study demonstrates that through careful design space exploration, low-power many-core platforms like Tilera can be effectively exploitedmore » for graph algorithms that that embody all the essential characteristics of an irregular application.« less
; ;
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: 21st International Conference on High Performance Computing (HiPC 2014), December 17-20, 2014, Dona Paula, India
IEEE, Piscataway, NJ, United States(US).
Research Org:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org:
Country of Publication:
United States
Tilera; community detection