skip to main content

Title: Development of epitaxial Al xSc 1-xN for artificially structured metal/semiconductor superlattice metamaterials

Epitaxial nitride rocksalt metal/semiconductor superlattices are emerging as a novel class of artificially structured materials that have generated significant interest in recent years for their potential application in plasmonic and thermoelectric devices. Though most nitride metals are rocksalt, nitride semiconductors in general have hexagonal crystal structure. We report rocksalt aluminum scandium nitride (Al,Sc)N alloys as the semiconducting component in epitaxial rocksalt metal/semiconductor superlattices. The Al xSc 1-xN alloys when deposited directly on MgO substrates are stabilized in a homogeneous rocksalt (single) phase when x < 0.51. Employing 20 nm TiN as a seed layer on MgO substrates, the homogeneity range for stabilizing the rocksalt phase has been extended to x < 0.82 for a 120 nm film. The rocksalt Al xSc 1-xN alloys show moderate direct bandgap bowing with a bowing parameter, B = 1.41 ± 0.19 eV. The direct bandgap of metastable rocksalt AlN is extrapolated to be 4.70 ± 0.20 eV. The tunable lattice parameter, bandgap, dielectric permittivity, and electronic properties of rocksalt Al xSc 1-xN alloys enable high quality epitaxial rocksalt metal/Al xSc 1-xN superlattices with a wide range of accessible metamaterials properties.
 [1] ;  [2] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Purdue Univ., West Lafayette, IN (United States)
  2. Purdue Univ., West Lafayette, IN (United States); Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 0370-1972; KC040302
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Physica Status Solidi B. Basic Solid State Physics
Additional Journal Information:
Journal Volume: 252; Journal Issue: 2; Journal ID: ISSN 0370-1972
Research Org:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States