skip to main content

Title: FY15 Status Report: CIRFT Testing of Spent Nuclear Fuel Rods from Boiler Water Reactor Limerick

The objective of this project is to perform a systematic study of used nuclear fuel (UNF, also known as spent nuclear fuel [SNF]) integrity under simulated transportation environments using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot-cell testing technology developed at Oak Ridge National Laboratory (ORNL) in August 2013. Under Nuclear Regulatory Commission (NRC) sponsorship, ORNL completed four benchmark tests, four static tests, and twelve dynamic or cycle tests on H. B. Robinson (HBR) high burn-up (HBU) fuel. The clad of the HBR fuels was made of Zircaloy-4. Testing was continued in fiscal year (FY) 2014 using Department of Energy (DOE) funds. The additional CIRFT was conducted on three HBR rods (R3, R4, and R5) in which two specimens failed and one specimen was tested to over 2.23 10⁷ cycles without failing. The data analysis on all the HBR UNF rods demonstrated that it is necessary to characterize the fatigue life of the UNF rods in terms of (1) the curvature amplitude and (2) the maximum absolute of curvature extremes. The maximum extremes are significant because they signify the maximum of tensile stress for the outer fiber of the bending rod. CIRFT testing has also addressed a large variation inmore » hydrogen content on the HBR rods. While the load amplitude is the dominant factor that controls the fatigue life of bending rods, the hydrogen content also has an important effect on the lifetime attained at each load range tested. In FY 15, ten SNF rod segments from BWR Limerick were tested using ORNL CIRFT, with one under static and nine dynamic loading conditions. Under static unidirectional loading, a moment of 85 N·m was obtained at maximum curvature 4.0 m⁻¹. The specimen did not show any sign of failure in three repeated loading cycles to almost same maximum curvature. Ten cyclic tests were conducted with amplitude varying from 15.2 to 7.1 N·m. Failure was observed in nine of the tested rod specimens. The cycles to failure were from 1.22 10⁵ to 4.70 10⁶, when the amplitude varied from 15.2 to 7.6 N·m. The measurements at the interrupts indicated a range of flexural rigidity from 30 to 50 Nm². The on-line monitoring revealed that the flexural rigidity was a little lower due to the high level of loading, from 25 to 42 Nm². Generally, no substantial change of rigidity was observed based on on-line monitoring during the cyclic fatigue testing process. Overall, the decreasing trend of lifetime with the increasing amplitude is well defined.« less
 [1] ;  [1] ;  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
AF5865010; NEAF346
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Temperature Materials Lab. (HTML)
Sponsoring Org:
USDOE Office of Nuclear Energy (NE)
Country of Publication:
United States
Boiling water reactor; spent nuclear fuel; fel vibration integrity; reversal bending fatigue tetsing