skip to main content

This content will become publicly available on December 23, 2015

Title: Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator CrI 3

Here, we examine the crystallographic and magnetic properties of single crystals of CrI3, an easily cleavable, layered and insulating ferromagnet with a Curie temperature of 61 K. Our X-ray diffraction studies reveal a first-order crystallographic phase transition occurring near 210–220 K upon warming, with significant thermal hysteresis. The low-temperature structure is rhombohedral (R$$\bar{3}$$, BiI3-type) and the high-temperature structure is monoclinic (C2/m, AlCl3-type). Evidence for coupling between the crystallographic and magnetic degrees of freedom in CrI3 was found; we observed an anomaly in the interlayer spacing at the Curie temperature and an anomaly in the magnetic susceptibility at the structural transition. First-principles calculations reveal the importance of proper treatment of the long-ranged interlayer forces, and van der Waals density functional theory does an excellent job of predicting the crystal structures and their relative stability. Our calculations suggest that the ferromagnetic order found in the bulk material may persist into monolayer form, suggesting that CrI3 and other chromium trihalides may be promising materials for spintronic and magnetoelectronic research.
 [1] ;  [1] ;  [1] ;  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
OSTI Identifier:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 27; Journal Issue: 2; Journal ID: ISSN 0897-4756
American Chemical Society (ACS)
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States