skip to main content

Title: Nonlinear mechanical resonators for ultra-sensitive mass detection

The fundamental sensitivity limit of an appropriately scaled down mechanical resonator can approach one atomic mass unit when only thermal noise is present in the system. However, operation of such nanoscale mechanical resonators is very challenging due to minuteness of their oscillation amplitudes and presence of multiple noise sources in real experimental environments. In order to surmount these challenges, we use microscale cantilever resonators driven to large amplitudes, far beyond their nonlinear instability onset. Our experiments show that such a nonlinear cantilever resonator, described analytically as a Duffing oscillator, has mass sensing performance comparable to that of much smaller resonators operating in a linear regime. We demonstrate femtogram level mass sensing that relies on a bifurcation point tracking that does not require any complex readout means. Our approaches enable straightforward detection of mass changes that are near the fundamental limit imposed by thermo-mechanical fluctuations.
Authors:
 [1] ;  [1]
  1. ORNL
Publication Date:
OSTI Identifier:
1185740
DOE Contract Number:
AC05-00OR22725
Resource Type:
Conference
Resource Relation:
Conference: SPIE Security and Defense 2014, Amsterdam, Netherlands, 20140921, 20140925
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English