skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Definition of Capabilities Needed for a Single Event Effects Test Facility

Technical Report ·
DOI:https://doi.org/10.2172/1185723· OSTI ID:1185723
 [1];  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)

The Federal Aviation Administration (FAA) is contemplating new regulations mandating testing of the vulnerability of flight-critical avionics to single event effects (SEE). A limited number of high-energy neutron test facilities currently serve the SEE industrial and institutional research community. The FAA recognizes that existing facilities have insufficient test capacity to meet new demand from such mandates; it desires more flexible irradiation capabilities to test complete, large systems and would like capabilities to address greater concerns for thermal neutrons. For this reason, the FAA funded this study by Spallation Neutron Source (SNS) staff with the ultimate aim of developing options for SEE test facilities using high-energy neutrons at the SNS complex. After an investigation of current SEE test practices and assessment of future testing requirements, three concepts were identified covering a range of test functionality, neutron flux levels, and fidelity to the atmospheric neutron spectrum. The costs and times required to complete each facility were also estimated. SEE testing is generally performed by accelerating the event rate to a point where the effects are still dominated by single events and double event causes of failures are negligible. In practice, acceleration factors of as high as 106 are applicable for component testing, whereas for systems testing acceleration factors of 104 seem to be the upper limit. It is strongly desirable that the irradiation facility be tunable over a large range of high-energy neutron fluxes of 102 - 104 n/cm²/s for systems testing and from 104 - 107 n/cm²/s for components testing. The most capable, most flexible, and highest-test-capacity option is a new stand-alone target station named the High-Energy neutron Test Station (HETS). It is also the most expensive option, with a cost to complete of approximately $100 million. Dual test enclosures would allow for simultaneous testing activity effectively doubling overall test capacity per HETS operating hour. Using about 1 kilowatt (kW) of proton power extracted from the accelerator before injection in the accumulator ring, its operation would be unnoticeable by neutron scattering users at the SNS target station. The H beam laser stripping technique would allow for control of beam power on the HETS target independent from power delivered to the SNS. Large systems with frontal areas of up to 1 x 2 m² could be accommodated with integral high-energy flux values (above 10 megaelectron-volt, or MeV) to at most 104 n/cm²/s; components could also be tested with flux levels to at most 107 n/cm²/s on beam sizes of up to 0.2 x 0.2 m². Selectable moderating material and neutron filters would allow tailoring of the neutron spectrum to user demands; charged particle deflectors could be switched to allow or deflect protons, pions, and muons. It is estimated that HETS would take 5 years to complete after award of contract, including engineering design and construction. Commissioning would take at least another 6 months. Interference with SNS principal operations was not considered in the construction time estimate; connection of the proton transport line and tunnel from the accelerator high energy beam transport (HEBT) and construction around existing site utilities would require careful planning and coordination with beam operations at the SNS. A high-energy (HE) neutron test facility using an available beam line on the SNS target station is a technically and financially attractive option. Inspired by the new ChipIR instrument on the ISIS TS 2 spallation source in the UK, a similar facility could be placed on an unused beam line in the SNS instrument hall [e.g., on beam line 8 (both A and B channels would be needed) or on beam line 10]. The performance would approach that of an HETS (~80%), but it would be operationally more limited, with only a single user at a time. Space is more limited, so the maximum system size would be about half of that in an HETS. Flexibility to tailor the spectrum would be somewhat more limited. While this concept was not as fully developed and characterized, preliminary work indicates very high HE flux levels should be possible, with ample thermal neutrons as well. Flux control would be more difficult than at HETS because proton power on target be whatever the SNS was operating at for neutron scattering. Neutron attenuation devices would have to be employed with as-yet undetermined control resolution. However, no new buildings would be needed, and the necessary utilities are already present in the SNS Experiment Hall. The estimated cost for a beam line option is around $15 million; the time to complete would be 3 years after award of contract, plus at least 6 months for commissioning. Interference of construction activities with SNS operations should be negligible. This option would require negotiation with the Department of Energy Basic Energy Sciences (BES) office -- the primary stakeholder of SNS -- for an application outside the usual scope of neutron scattering sciences. Furthermore, these presently open beam lines are highly desirable locations for proposed neutron scattering instruments and obtaining one of them for an SEE test facility will come only with persuasive and timely arguments to SNS leadership and the DOE BES. The third option is a tunnel extension/target cave facility providing the most basic system-level irradiation capability with minimal flexibility. Again not as well developed a concept as HETS, it would use a laser-stripping technique like an HETS, redirecting protons to a tunnel similar to the initial HETS proton transport tunnel. Indeed, this concept is intended to be upgradable to a full HETS facility. Only a small fraction of a watt of proton power would be used in this basic configuration, though. An uncooled target and primitive shielding arrangement would provide beam on modestly sized systems that must be placed in close proximity to the target. The neutron fluence would be less uniform over the system than with the HETS or the beam line option. A data acquisition room and support area would be located on the ground level; access to the target cave would be via elevator and/or stairway. As a result of the required excavation, new tunnel construction, shielding, data acquisition building, utilities, and other items, the estimated cost is $30 million. The time to complete is expected be more than 3 years; here again construction interference with SNS operations has not been accounted for, but it could have a significant impact.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)
Sponsoring Organization:
USDOE; Federal Aviation Administration
DOE Contract Number:
AC05-00OR22725
OSTI ID:
1185723
Report Number(s):
ORNL/TM-2014/553; 400407000; TRN: US1500322
Country of Publication:
United States
Language:
English