skip to main content

Title: Superhydrophobic Analyte Concentration Utilizing Colloid-Pillar Array SERS Substrates

In order to detect a few molecules present in a large sample it is important to know the trace components in the medicinal and environmental sample. Surface enhanced Raman spectroscopy (SERS) is a technique that can be utilized to detect molecules at very low absolute numbers. However, detection at trace concentration levels in real samples requires properly designed delivery and detection systems. Moreover, the following work involves superhydrophobic surfaces that includes silicon pillar arrays formed by lithographic and dewetting protocols. In order to generate the necessary plasmonic substrate for SERS detection, simple and flow stable Ag colloid was added to the functionalized pillar array system via soaking. The pillars are used native and with hydrophobic modification. The pillars provide a means to concentrate analyte via superhydrophobic droplet evaporation effects. A 100-fold concentration of analyte was estimated, with a limit of detection of 2.9 10-12 M for mitoxantrone dihydrochloride. Additionally, analytes were delivered to the surface via a multiplex approach in order to demonstrate an ability to control droplet size and placement for scaled-up applications in real world applications. Finally, a concentration process involving transport and sequestration based on surface treatment selective wicking is demonstrated.
 [1] ;  [2] ;  [1] ;  [3] ;  [3] ;  [1]
  1. Univ. of Tennessee, Knoxville, TN (United States)
  2. Univ. of Tennessee, Knoxville, TN (United States); Y-12 National Security Complex, Oak Ridge, TN (United States)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
OSTI Identifier:
Grant/Contract Number:
AC05-00OR22725; CHE-1144947
Accepted Manuscript
Journal Name:
Analytical Chemistry
Additional Journal Information:
Journal Volume: 86; Journal Issue: 23; Journal ID: ISSN 0003-2700
American Chemical Society (ACS)
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States