skip to main content

Title: Development of ODS FeCrAl for compatibility in fusion and fission energy applications

In this paper, oxide dispersion strengthened (ODS) FeCrAl alloys with 12–15% Cr are being evaluated for improved compatibility with Pb-Li for a fusion energy application and with high temperature steam for a more accident-tolerant light water reactor fuel cladding application. A 12% Cr content alloy showed low mass losses in static Pb-Li at 700°C, where a LiAlO 2 surface oxide formed and inhibited dissolution into the liquid metal. All the evaluated compositions formed a protective scale in steam at 1200°C, which is not possible with ODS FeCr alloys. However, most of the compositions were not protective at 1400°C, which is a general and somewhat surprising problem with ODS FeCrAl alloys that is still being studied. More work is needed to optimize the alloy composition, microstructure and oxide dispersion, but initial promising tensile and creep results have been obtained with mixed oxide additions, i.e. Y 2O 3 with ZrO 2, HfO 2 or TiO 2.
 [1] ;  [1] ;  [1] ;  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
OSTI Identifier:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
JOM. Journal of the Minerals, Metals & Materials Society
Additional Journal Information:
Journal Volume: 66; Journal Issue: 12; Journal ID: ISSN 1047-4838
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Nuclear Energy (NE); USDOE Office of Science (SC)
Country of Publication:
United States
36 MATERIALS SCIENCE; ODS; FeCrAl; Al2O3; liquid metal compatibility; steam oxidation; PbLi; creep; tensile; fuel cladding