skip to main content

Title: A Novel and Functional Single-Layer Sheet of ZnSe

In this Communication, we report a novel singlelayer sheet of ZnSe, with a three-atomic thickness, which demonstrates a strong quantum confinement effect by exhibiting a large blue shift of 2.0 eV in its absorption edge relative to the zinc blende (ZB) bulk phase. Theoretical optical absorbance shows that the largest absorption of this ultrathin single-layer sheet of ZnSe occurs at a wavelength similar to its four-atom-thick doublelayer counterpart but with higher photoabsorption efficiency, suggesting a superior behavior on incident photon-to-current conversion efficiency for solar water splitting, among other potential applications. The results presented herein for ZnSe may be generalized to other group II-VI analogues.
 [1] ;  [1] ;  [1] ;  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
OSTI Identifier:
Grant/Contract Number:
AC05-00OR22725; AC05-00OR22750; AC02-05CH11231
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 7; Journal Issue: 3; Journal ID: ISSN 1944-8244
American Chemical Society (ACS)
Research Org:
Center for Nanophase Materials Sciences (CNMS); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
36 MATERIALS SCIENCE; BSE; DFT; GW approximation; photovoltaic; Two-dimensional materials