skip to main content

Title: Abrupt Climate Change and the Atlantic Meridional Overturning Circulation: sensitivity and non-linear response to Arctic/sub-Arctic freshwater pulses. Collaborative research. Final report

This project investigated possible mechanisms by which melt-water pulses can induce abrupt change in the Atlantic Meridional Overturning Circulation (AMOC) magnitude. AMOC magnitude is an important ingredient in present day climate. Previous studies have hypothesized abrupt reduction in AMOC magnitude in response to influxes of glacial melt water into the North Atlantic. Notable fresh-water influxes are associated with the terminus of the last ice age. During this period large volumes of melt water accumulated behind retreating ice sheets and subsequently drained rapidly when the ice weakened sufficiently. Rapid draining of glacial lakes into the North Atlantic is a possible origin of a number of paleo-record abrupt climate shifts. These include the Younger-Dryas cooling event and the 8,200 year cooling event. The studies undertaken focused on whether the mechanistic sequence by which glacial melt-water impacts AMOC, which then impacts Northern Hemisphere global mean surface temperature, is dynamically plausible. The work has implications for better understanding past climate stability. The work also has relevance for today’s environment, in which high-latitude ice melting in Greenland appears to be driving fresh water outflows at an accelerating pace.
  1. MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
Country of Publication:
United States
58 GEOSCIENCES Abrupt climate change