skip to main content

SciTech ConnectSciTech Connect

Title: Preshot Calculations for a Small-Scale HE Experiment. Overview and Results for Symmetric Configurations

Explosively-driven magnetic flux compression generators create substantial currents (10’s of mega-amps) by compressing magnetic fields initially created by injected seed currents. In a Ranchero generator it is the field between two cylinders of aluminum that is compressed when the inner cylinder (armature) is driven across the magnetized gap toward the second cylinder (stator) [1]. All Rancheros to date have used the explosive PBXN-110, but future devices are expected to use PBX-9501 because of several advantages of the latter over the former. For Ranchero applications, though, a potentially important disadvantage stems from the requirement that the large PBX-9501 charges (15 to 50 kg) must built up from smaller machined pieces rather than cast into the appropriate shape as with PBXN-110. Calculations [2] and related experiments [3] raise the possibility that jetting may occur at gaps between machined pieces of PBX-9501 and lead to localized failure of the soft aluminum armature causing premature contact of the armature with the stator or, in the most extreme case, a severing of the armature into separate pieces and a subsequent loss of current. A set of small-scale experiments has been designed to provide Ranchero designers and users insight into the effects of gaps and alsomore » to provide useful data for the validation of Ranchero calculations. These experiments should be executed in early May 2015. The code Rage [4] was used to model the small-scale experiment and this paper presents the results. The emphasis here is on the calculations and the experimental details are limited, so the interested reader is referred to reference 5 for a fuller description of the experimental configuration and diagnostics. Less-interested readers may be interested in only a summary of results and are directed to the “Summary of key results” section later in this paper.« less
Authors:
 [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
OSTI Identifier:
1183404
Report Number(s):
LA-UR--15-23920
DOE Contract Number:
AC52-06NA25396
Resource Type:
Technical Report
Research Org:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
General & Miscellaneous(99); Materials Science(36) Ranchero