skip to main content

Title: Ga Lithography in Sputtered Niobium for Superconductive Micro and Nanowires.

This work demonstrates the use of FIB implanted Ga as a lithographic mask for plasma etching of Nb films. Using a highly collimated Ga beam of a FIB, Nb is implanted 12 nm deep with a 14 nm thick Ga layer providing etch selectivity better than 15:1 with fluorine based etch chemistry. Implanted square test patterns, both 10 um by and 10 um and 100 um by 100 um, demonstrate that doses above than 7.5 x 1015 cm-2 at 30 kV provide adequate mask protection for a 205 nm thick, sputtered Nb film. The resolution of this dry lithographic technique is demonstrated by fabrication of nanowires 75 nm wide by 10 um long connected to 50 um wide contact pads. The residual resistance ratio of patterned Nb films was 3. The superconducting transition temperature, Tc =7.7 K, was measured using MPMS. This nanoscale, dry lithographic technique was extended to sputtered TiN and Ta here and could be used on other fluorine etched superconductors such as NbN, NbSi, and NbTi.
 [1] ;  [1] ;  [1] ;  [1]
  1. Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 0003-6951; 533692
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 105; Journal Issue: 7; Journal ID: ISSN 0003-6951
American Institute of Physics (AIP)
Research Org:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States