skip to main content

Title: Central safety factor and β N control on NSTX-U via beam power and plasma boundary shape modification, using TRANSP for closed loop simulations

The high-performance operational goals of NSTX-U will require development of advanced feedback control algorithms, including control of ßN and the safety factor profile. In this work, a novel approach to simultaneously controlling ßN and the value of the safety factor on the magnetic axis, q0, through manipulation of the plasma boundary shape and total beam power, is proposed. Simulations of the proposed scheme show promising results and motivate future experimental implementation and eventual integration into a more complex current profile control scheme planned to include actuation of individual beam powers, density, and loop voltage. As part of this work, a flexible framework for closed loop simulations within the high-fidelity code TRANSP was developed. The framework, used here to identify control-design-oriented models and to tune and test the proposed controller, exploits many of the predictive capabilities of TRANSP and provides a means for performing control calculations based on user-supplied data (controller matrices, target waveforms, etc.). The flexible framework should enable high-fidelity testing of a variety of control algorithms, thereby reducing the amount of expensive experimental time needed to implement new control algorithms on NSTX-U and other devices.
Authors:
; ; ; ; ;
Publication Date:
OSTI Identifier:
1182719
Report Number(s):
PPPL-5080
Journal ID: ISSN 0029-5515
DOE Contract Number:
DE-AC02-09CH11466
Resource Type:
Journal Article
Resource Relation:
Journal Name: Nuclear Fusion; Journal Volume: 55; Journal Issue: 5
Publisher:
IOP Science
Research Org:
Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY