skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Energy-aware Thread and Data Management in Heterogeneous Multi-core, Multi-memory Systems

Thesis/Dissertation ·
DOI:https://doi.org/10.2172/1179104· OSTI ID:1179104
 [1]
  1. Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

By 2004, microprocessor design focused on multicore scaling—increasing the number of cores per die in each generation—as the primary strategy for improving performance. These multicore processors typically equip multiple memory subsystems to improve data throughput. In addition, these systems employ heterogeneous processors such as GPUs and heterogeneous memories like non-volatile memory to improve performance, capacity, and energy efficiency. With the increasing volume of hardware resources and system complexity caused by heterogeneity, future systems will require intelligent ways to manage hardware resources. Early research to improve performance and energy efficiency on heterogeneous, multi-core, multi-memory systems focused on tuning a single primitive or at best a few primitives in the systems. The key limitation of past efforts is their lack of a holistic approach to resource management that balances the tradeoff between performance and energy consumption. In addition, the shift from simple, homogeneous systems to these heterogeneous, multicore, multi-memory systems requires in-depth understanding of efficient resource management for scalable execution, including new models that capture the interchange between performance and energy, smarter resource management strategies, and novel low-level performance/energy tuning primitives and runtime systems. Tuning an application to control available resources efficiently has become a daunting challenge; managing resources in automation is still a dark art since the tradeoffs among programming, energy, and performance remain insufficiently understood. In this dissertation, I have developed theories, models, and resource management techniques to enable energy-efficient execution of parallel applications through thread and data management in these heterogeneous multi-core, multi-memory systems. I study the effect of dynamic concurrent throttling on the performance and energy of multi-core, non-uniform memory access (NUMA) systems. I use critical path analysis to quantify memory contention in the NUMA memory system and determine thread mappings. In addition, I implement a runtime system that combines concurrent throttling and a novel thread mapping algorithm to manage thread resources and improve energy efficient execution in multi-core, NUMA systems.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC52-07NA27344
OSTI ID:
1179104
Report Number(s):
LLNL-TH-665255
Country of Publication:
United States
Language:
English

Similar Records

Data Locality Enhancement of Dynamic Simulations for Exascale Computing (Final Report)
Technical Report · Fri Nov 29 00:00:00 EST 2019 · OSTI ID:1179104

Critical Path-Based Thread Placement for NUMA Systems
Conference · Tue Nov 01 00:00:00 EDT 2011 · OSTI ID:1179104

Petascale Computing Enabling Technologies Project Final Report
Technical Report · Sun Feb 14 00:00:00 EST 2010 · OSTI ID:1179104

Related Subjects