skip to main content

This content will become publicly available on April 7, 2015

Title: A functional role of Rv1738 in Mycobacterium tuberculosis persistence suggested by racemic protein crystallography

Racemic protein crystallography was used to determine the X-ray structure of the predicted Mycobacterium tuberculosis protein Rv1738, which had been completely recalcitrant to crystallization in its natural L-form. Native chemical ligation was used to synthesize both L-protein and D-protein enantiomers of Rv1738. Crystallization of the racemic {D-protein + L-protein} mixture was immediately successful. The resulting crystals diffracted to high resolution and also enabled facile structure determination because of the quantized phases of the data from centrosymmetric crystals. The X-ray structure of Rv1738 revealed striking similarity with bacterial hibernation factors, despite minimal sequence similarity. As a result, we predict that Rv1738, which is highly up-regulated in conditions that mimic the onset of persistence, helps trigger dormancy by association with the bacterial ribosome.
 [1] ;  [2] ;  [1] ;  [1] ;  [2] ;  [1] ;  [2] ;  [1]
  1. Univ. of Auckland, Auckland (New Zealand)
  2. Univ. of Chicago, Chicago, IL (United States)
Publication Date:
OSTI Identifier:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Volume: 112; Journal Issue: 14; Journal ID: ISSN 0027-8424
National Academy of Sciences, Washington, DC (United States)
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org:
Country of Publication:
United States
59 BASIC BIOLOGICAL SCIENCES; racemic protein crystallography; Mycobacterium tuberculosis; ribosome binding; dormancy; protein structure