skip to main content

Title: Vibrationally-resolved Photoelectron Spectroscopy of the Model GFP Chromophore Anion Revealing the Photoexcited S-1 State being both Vertically and Adiabatically Bound against the Photodetached D-0 Continuum

The first excited state of the model green fluorescence protein (GFP) chromophore anion (S1) and its energy level against the electron-detached neutral radical, D0 state are crucial in determining the photophysics and the photo-induced dynamics of GFP. Extensive experimental and theoretical studies, particularly several very recent gas phase investigations concluded that S1 is a bound state in the Franck-Condon vertical region with respect to D0. However, what remains unknown and challenging is if S1 is bound adiabatically, primarily due to lack of accurate experimental measurements, as well as due to close proximity in energy for these two states that even sophisticated high-level ab initio calculations can’t reliably predict. Here, we report a negative ion photoelectron spectroscopy study on the model GFP chromophore anion, the deprotonated p-hydroxybenzylidene-2,3-dimethylimidazolinone anion (HBDI–). Despite the considerable size and low symmetry of the molecule, well resolved vibrational structures were obtained with the 0–0 transition being the most intense peak. The adiabatic (ADE) and vertical detachment energy (VDE) therefore are determined, both to be 2.73 ± 0.01 eV, indicating the detached D0 state is 0.16 eV higher in energy than the photon excited S1 state. The accurate ADE and VDE values and the well-resolved photoelectron spectra reportedmore » here provide much needed, robust benchmarks for future theoretical investigations.« less
; ; ; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
44678; KC0301020
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Physical Chemistry Letters, 5(12):2155-2159
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org:
Country of Publication:
United States
Environmental Molecular Sciences Laboratory