skip to main content

Title: Catalyst design with atomic layer deposition

Atomic layer deposition (ALD) has emerged as an interesting tool for the atomically precise design and synthesis of catalytic materials. Herein, we discuss examples in which the atomic precision has been used to elucidate reaction mechanisms and catalyst structure-property relationships by creating materials with a controlled distribution of size, composition, and active site. We highlight ways ALD has been utilized to design catalysts with improved activity, selectivity, and stability under a variety of conditions (e.g., high temperature, gas and liquid phase, and corrosive environments). In addition, due to the flexibility and control of structure and composition, ALD can create myriad catalytic structures (e.g., high surface area oxides, metal nanoparticles, bimetallic nanoparticles, bifunctional catalysts, controlled microenvironments, etc.) that consequently possess applicability for a wide range of chemical reactions (e.g., CO2 conversion, electrocatalysis, photocatalytic and thermal water splitting, methane conversion, ethane and propane dehydrogenation, and biomass conversion). Lastly, the outlook for ALD-derived catalytic materials is discussed, with emphasis on the pending challenges as well as areas of significant potential for building scientific insight and achieving practical impacts.
Authors:
 [1] ;  [1] ;  [1] ;  [2] ;  [3] ;  [2] ;  [2] ;  [1] ;  [1] ;  [1]
  1. Univ. of Wisconsin, Madison, WI (United States)
  2. Argonne National Lab. (ANL), Argonne, IL (United States)
  3. Northwestern Univ., Evanston, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
OSTI Identifier:
1172068
Grant/Contract Number:
AC02-06CH11357
Type:
Published Article
Journal Name:
ACS Catalysis
Additional Journal Information:
Journal Volume: 5; Journal Issue: 3; Journal ID: ISSN 2155-5435
Publisher:
American Chemical Society
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; atomic layer deposition; ALD; catalyst overcoating; metal nanoparticles; bimetallic nanoparticles; controlled synthesis; catalyst design; mechanism elucidation