skip to main content

Title: Lightweight Materials for Automotive Application: An Assessment of Material Production Data for Magnesium and Carbon Fiber

The use of lightweight materials in vehicle components, also known as “lightweighting,” can result in automobile weight reduction, which improves vehicle fuel economy and generally its environmental footprint. Materials often used for vehicle lightweighting include aluminum, magnesium, and polymers reinforced with either glass or carbon fiber. However, because alternative materials typically used for vehicle lightweighting require more energy to make on a per part basis than the material being replaced (often steel or iron), the fuel efficiency improvement induced by a weight reduction is partially offset by an increased energy for the vehicle material production. To adequately quantify this tradeoff, reliable and current values for life-cycle production energy are needed for both conventional and alternative materials. Our focus here is on the production of two such alternative materials: magnesium and carbon fibers. Both these materials are low density solids with good structural properties. These properties have enabled their use in applications where weight is an issue, not only for automobiles but also for aerospace applications. This report addresses the predominant production methods for these materials and includes a tabulation of available material and energy input data necessary to make them. The life cycle inventory (LCI) information presented herein represents amore » process chain analysis (PCA) approach to life cycle assessment (LCA) and is intended for evaluation as updated materials production data for magnesium and carbon fiber for inclusion into the Greenhouse gases, Regulated Emissions, and Energy use in Transportation model (GREET2_2012). The summary life-cycle metrics used to characterize the cradle-to-gate environmental performance of these materials are the cumulative energy demand (CED) and greenhouse gas emissions (GHG) per kilogram of material.« less
 [1] ;  [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
Country of Publication:
United States
Carbon fiber production; Magnesium production; Material Production; life cycle assessment