skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Local Electronic And Dielectric Properties at Nanosized Interfaces (Final Report)

Abstract

The behavior of grain boundaries and interfaces has been a focus of fundamental research for decades because variations of structure and composition at interfaces dictate mechanical, electrical, optical and dielectric properties in solids. Similarly, the consequence of atomic and electronic structures of surfaces to chemical and physical interactions are critical due to their implications to catalysis and device fabrication. Increasing fundamental understanding of surfaces and interfaces has materially advanced technologies that directly bear on energy considerations. Currently, exciting developments in materials processing are enabling creative new electrical, optical and chemical device configurations. Controlled synthesis of nanoparticles, semiconducting nanowires and nanorods, optical quantum dots, etc. along with a range of strategies for assembling and patterning nanostructures portend the viability of new devices that have the potential to significantly impact the energy landscape. As devices become smaller the impact of interfaces and surfaces grows geometrically. As with other nanoscale phenomena, small interfaces do not exhibit the same properties as do large interfaces. The size dependence of interface properties had not been explored and understanding at the most fundamental level is necessary to the advancement of nanostructured devices. An equally important factor in the behavior of interfaces in devices is the ability tomore » examine the interfaces under realistic conditions. For example, interfaces and boundaries dictate the behavior of oxide fuel cells which operate at extremely high temperatures in dynamic high pressure chemical environments. These conditions preclude the characterization of local properties during fuel cell operation. The objective of this research was to determine the size and interface atomic structure dependence of the electronic properties of metal/oxide interfaces using model materials systems of noble metals on SrTiO3 surfaces; and to develop experimental techniques to probe spatially localized properties under extreme conditions. The outcomes of this research summarized in more detail below include; Discovery of the presence of multiple size dependent transport mechanisms at nanoscale interfaces and determination of the critical size parameter associated with a transition from one to another; Determination of the effect of interface atomic structure and electronic structure at nanoscale interfaces on electronic transport across the interfaces, in particular the role of states associated with under coordinated cations enabling resonant tunneling and/or band bending; Discovery and characterization of size dependent resistive switching at nanoscale interfaces; These advances required the development of a process to produce nanosized contacts with controlled interface orientation over sizes (diameters) ranging from 20-500nm and the determination of the mechanical and electrical parameters for robust and accurate measurement of frequency dependent properties of nanoscale interfaces; Invention of a chamber that enables in situ scanning probe microscopy and spectroscopy at high temperature and reactive gas environments; and First measurement of interface properties in an operating solid oxide fuel cell, quantifying the local electrical potentials and energies associated with two reaction mechanisms.« less

Authors:
 [1]
  1. Univ. of Pennsylvania, Philadelphia, PA (United States)
Publication Date:
Research Org.:
Univ. of Pennsylvania, Philadelphia, PA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1170531
Report Number(s):
Final
DOE Contract Number:  
FG02-00ER45813
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Bonnell, Dawn A. Local Electronic And Dielectric Properties at Nanosized Interfaces (Final Report). United States: N. p., 2015. Web. doi:10.2172/1170531.
Bonnell, Dawn A. Local Electronic And Dielectric Properties at Nanosized Interfaces (Final Report). United States. https://doi.org/10.2172/1170531
Bonnell, Dawn A. 2015. "Local Electronic And Dielectric Properties at Nanosized Interfaces (Final Report)". United States. https://doi.org/10.2172/1170531. https://www.osti.gov/servlets/purl/1170531.
@article{osti_1170531,
title = {Local Electronic And Dielectric Properties at Nanosized Interfaces (Final Report)},
author = {Bonnell, Dawn A.},
abstractNote = {The behavior of grain boundaries and interfaces has been a focus of fundamental research for decades because variations of structure and composition at interfaces dictate mechanical, electrical, optical and dielectric properties in solids. Similarly, the consequence of atomic and electronic structures of surfaces to chemical and physical interactions are critical due to their implications to catalysis and device fabrication. Increasing fundamental understanding of surfaces and interfaces has materially advanced technologies that directly bear on energy considerations. Currently, exciting developments in materials processing are enabling creative new electrical, optical and chemical device configurations. Controlled synthesis of nanoparticles, semiconducting nanowires and nanorods, optical quantum dots, etc. along with a range of strategies for assembling and patterning nanostructures portend the viability of new devices that have the potential to significantly impact the energy landscape. As devices become smaller the impact of interfaces and surfaces grows geometrically. As with other nanoscale phenomena, small interfaces do not exhibit the same properties as do large interfaces. The size dependence of interface properties had not been explored and understanding at the most fundamental level is necessary to the advancement of nanostructured devices. An equally important factor in the behavior of interfaces in devices is the ability to examine the interfaces under realistic conditions. For example, interfaces and boundaries dictate the behavior of oxide fuel cells which operate at extremely high temperatures in dynamic high pressure chemical environments. These conditions preclude the characterization of local properties during fuel cell operation. The objective of this research was to determine the size and interface atomic structure dependence of the electronic properties of metal/oxide interfaces using model materials systems of noble metals on SrTiO3 surfaces; and to develop experimental techniques to probe spatially localized properties under extreme conditions. The outcomes of this research summarized in more detail below include; Discovery of the presence of multiple size dependent transport mechanisms at nanoscale interfaces and determination of the critical size parameter associated with a transition from one to another; Determination of the effect of interface atomic structure and electronic structure at nanoscale interfaces on electronic transport across the interfaces, in particular the role of states associated with under coordinated cations enabling resonant tunneling and/or band bending; Discovery and characterization of size dependent resistive switching at nanoscale interfaces; These advances required the development of a process to produce nanosized contacts with controlled interface orientation over sizes (diameters) ranging from 20-500nm and the determination of the mechanical and electrical parameters for robust and accurate measurement of frequency dependent properties of nanoscale interfaces; Invention of a chamber that enables in situ scanning probe microscopy and spectroscopy at high temperature and reactive gas environments; and First measurement of interface properties in an operating solid oxide fuel cell, quantifying the local electrical potentials and energies associated with two reaction mechanisms.},
doi = {10.2172/1170531},
url = {https://www.osti.gov/biblio/1170531}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Feb 23 00:00:00 EST 2015},
month = {Mon Feb 23 00:00:00 EST 2015}
}