skip to main content

Title: Role of Low Frequency Sea Surface Temperature Modes with a Changing Climate in Modulating Atlantic Hurricane Activity

The SSTs used in our study come from the Community Climate System Model version 4 (CCSM4) (Gent et al 2011) and from the Canadian Centre for Climate Modeling and Analysis (CanESM2) (Chylek et al20ll) climate models from the fifth Coupled Model Intercomparison Project (CMIP5) (Taylor et al2012). We've examined the tropical cyclones using both the historical simulation that employs volcanic and aerosol forcing as well as the representative concentration pathway 4.5 (RCP4.5). In addition, we've compared the present day North Atlantic tropical cyclone metrics from a previous study (LaRow, 2013) to these climate change experiments. The experimental setup is shown in Table 1. We considered the CMIP5 experiment number '3.2 historical' (Taylor et al,201l), which provides simulations of the recent past (1850-2005). The second set of CMIP5 SSTs is the RCp4.5 experiment where the radiative forcing stabilizes at 45W m-2 after 2100 (experiment number 4.1 in Taylor etal2}ll).
Authors:
 [1]
  1. Florida State Univ., Tallahassee, FL (United States)
Publication Date:
OSTI Identifier:
1169937
Report Number(s):
FINAL REPORT: DOE--FSU-04969-1
DOE Contract Number:
SC0004969
Resource Type:
Technical Report
Research Org:
Florida State Univ., Tallahassee, FL (United States)
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES