skip to main content

Title: Thermal Studies of the Laser Inertial Fusion Energy (LIFE) Target during Injection into the Fusion Chamber

The tests of the external heat transfer coefficient suggests that the values used in the numerical analysis for the temperature distribution within the fusion fuel target following flight into the target chamber are probably valid. The tests of the heat transfer phenomena occurring within the target due the rapid heating of the LEH window for the hot gasses within the fusion chamber show that the heat does indeed convect via the internal helium environment of the target towards the capsule and that the pressure in the front compartment of the target adjacent to the LEH window increases such that t bypass venting of the internal helium into the second chamber adjacent to the capsule is needed to prevent rupture of the membranes. The bypass flow is cooled by the hohlraum during this venting. However, the experiments suggest that our internal heat flow calculations may be low by about a factor of 2. Further studies need to be conducted to investigate the differences between the experiment and the numerical analysis. Future studies could also possibly bring the test conditions closer to those expected in the fusion chamber to better validate the results. A sacrificial layer will probably be required on themore » LEH window of the target and this can be used to mitigate any unexpected target heating.« less
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org:
Country of Publication:
United States