skip to main content

Title: Innovative Use of Cr(VI) Plume Depictions and Pump-and-Treat Capture Analysis to Estimate Risks of Contaminant Discharge to Surface Water at Hanford Reactor Areas

The Hanford Site nuclear reactor operations required large quantities of high-quality cooling water, which was treated with chemicals including sodium dichromate dihydrate for corrosion control. Cooling water leakage, as well as intentional discharge of cooling water to ground during upset conditions, produced extensive groundwater recharge mounds consisting largely of contaminated cooling water and resulted in wide distribution of hexavalent chromium (Cr[VI]) contamination in the unconfined aquifer. The 2013 Cr(VI) groundwater plumes in the 100 Areas cover approximately 6 km2 (1500 acres), primarily in the 100-HR-3 and 100-KR-4 groundwater operable units (OUs). The Columbia River is a groundwater discharge boundary; where the plumes are adjacent to the Columbia River there remains a potential to discharge Cr(VI) to the river at concentrations above water quality criteria. The pump-and-treat systems along the River Corridor are operating with two main goals: 1) protection of the Columbia River, and 2) recovery of contaminant mass. An evaluation of the effectiveness of the pump-and-treat systems was needed to determine if the Columbia River was protected from contamination, and also to determine where additional system modifications may be needed. In response to this need, a technique for assessing the river protection was developed which takes into consideration seasonalmore » migration of the plume and hydraulic performance of the operating well fields. Groundwater contaminant plume maps are generated across the Hanford Site on an annual basis. The assessment technique overlays the annual plume and the capture efficiency maps for the various pump and treat systems. The river protection analysis technique was prepared for use at the Hanford site and is described in detail in M.J. Tonkin, 2013. Interpolated capture frequency maps, based on mapping dynamic water level observed in observation wells and derived water levels in the vicinity of extraction and injection wells, are developed initially. Second, simulated capture frequency maps are developed, based on transport modelling results. Both interpolated and simulated capture frequency maps are based on operation of the systems over a full year. These two capture maps are then overlaid on the plume distribution maps for inspection of the relative orientation of the contaminant plumes with the capture frequency. To quantify the relative degree of protection of the river from discharges of Cr(VI) (and conversely, the degree of threat) at any particular location, a systematic method of evaluating and mapping the plume/capture relationship was developed. By comparing the spatial relationship between contaminant plumes and hydraulic capture frequency, an index of relative protectiveness is developed and the results posted on the combined plume/capture plan view map. Areas exhibiting lesser degrees of river protection are identified for remedial process optimization actions to control plumes and prevent continuing discharge of Cr(VI) to the river.« less
; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
SGW-58189-FP Rev 0
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: WM2015 Waste Management Symposia 03/15/2015 - 03/19/2015 Phoenix, AZ
Research Org:
Hanford Site (HNF), Richland, WA (United States)
Sponsoring Org:
USDOE Office of Environmental Management (EM)
Contributing Orgs:
CH2MHill Plateau Remediation Company, Department of Energy - Richland Operations Office, SS Papadopulos and Associates
Country of Publication:
United States