skip to main content

Title: Simulation of Coupled Processes of Flow, Transport, and Storage of CO 2 in Saline Aquifers

This report is the final scientific one for the award DE- FE0000988 entitled “Simulation of Coupled Processes of Flow, Transport, and Storage of CO 2 in Saline Aquifers.” The work has been divided into six tasks. In task, “Development of a Three-Phase Non-Isothermal CO 2 Flow Module,” we developed a fluid property module for brine-CO 2 mixtures designed to handle all possible phase combinations of aqueous phase, sub-critical liquid and gaseous CO 2, supercritical CO 2, and solid salt. The thermodynamic and thermophysical properties of brine-CO 2 mixtures (density, viscosity, and specific enthalpy of fluid phases; partitioning of mass components among the different phases) use the same correlations as an earlier fluid property module that does not distinguish between gaseous and liquid CO 2-rich phases. We verified the fluid property module using two leakage scenarios, one that involves CO 2 migration up a blind fault and subsequent accumulation in a secondary “parasitic” reservoir at shallower depth, and another investigating leakage of CO 2 from a deep storage reservoir along a vertical fault zone. In task, “Development of a Rock Mechanical Module,” we developed a massively parallel reservoir simulator for modeling THM processes in porous media brine aquifers. We derived, frommore » the fundamental equations describing deformation of porous elastic media, a momentum conservation equation relating mean stress, pressure, and temperature, and incorporated it alongside the mass and energy conservation equations from the TOUGH2 formulation, the starting point for the simulator. In addition, rock properties, namely permeability and porosity, are functions of effective stress and other variables that are obtained from the literature. We verified the simulator formulation and numerical implementation using analytical solutions and example problems from the literature. For the former, we matched a one-dimensional consolidation problem and a two-dimensional simulation of the Mandel-Cryer effect. For the latter, we obtained a good match of temperature and gas saturation profiles, and surface uplift, after injection of hot fluid into a model of a caldera structure. In task, “Incorporation of Geochemical Reactions of Selected Important Species,” we developed a novel mathematical model of THMC processes in porous and fractured saline aquifers, simulating geo-chemical reactions associated with CO 2 sequestration in saline aquifers. Two computational frameworks, sequentially coupled and fully coupled, were used to simulate the reactions and transport. We verified capabilities of the THMC model to treat complex THMC processes during CO 2 sequestration by analytical solutions and we constructed reactive transport models to analyze the THMC process quantitatively. Three of these are 1D reactive transport under chemical equilibrium, a batch reaction model with equilibrium chemical reactions, and a THMC model with CO 2 dissolution. In task “Study of Instability in CO 2 Dissolution-Diffusion-Convection Processes,” We reviewed literature related to the study of density driven convective flows and on the instability of CO 2 dissolution-diffusion-convection processes. We ran simulations that model the density-driven flow instability that would occur during CO 2 sequestration. CO 2 diffused through the top of the system and dissolved in the aqueous phase there, increasing its density. Density fingers formed along the top boundary, and coalesced into a few prominent ones, causing convective flow that forced the fluid to the system bottom. These simulations were in two and three dimensions. We ran additional simulations of convective mixing with density contrast caused by variable dissolved CO 2 concentration in saline water, modeled after laboratory experiments in which supercritical CO2 was circulated in the headspace above a brine saturated packed sand in a pressure vessel. As CO 2 dissolved into the upper part of the saturated sand, liquid phase density increases causing instability and setting off convective mixing. We obtained good agreement with the laboratory experiments, which were characterized by finger development and associated mixing of dissolved CO 2 into the system. We then varied a wide range of parameters and conceptual models in order to analyze the possibility of convective mixing under different conditions, such as various boundary conditions, and chemical reaction conditions. The CO 2 fingers from different simulations showed great differences as time progressed, caused by permeability heterogeneity. The early time diffusive phenomenon was captured by fine grid resolution, and the permeability heterogeneity affected the pattern of the CO 2 fingers. In addition, the fingers from three-dimensional simulations tended to be larger and flatter than the two-dimensional ones. In task “Implementation of Efficient Parallel Computing Technologies,” we made enhancements and modifications to our code in order to substantially increase the grid size that could be run. We installed and ran it on various platforms, including a multi-core PC and a cluster, and verified the numerical implementation and parallel code using an example problem from the literature. This problem, with a grid size of sixty million, utilized the cluster’s entire memory and all of its processors. In task “Implementation of General Fracture Conceptual Models,” we used the MINC approach, a generalization of the double-porosity concept, to model flow through porous and fractured media. In this approach, flow within the matrix is described by subdividing the matrix into nested volumes, with flow occurring between adjacent nested matrix volumes as well as between the fractures and the outer matrix volume. We generalized Hooke’s law to a thermo-multi- poroelastic medium, and derived from the fundamental equations describing deformation of porous and fractured elastic media a momentum conservation equation for thermo-multi- poroelastic media. This equation is a generalization to multi-poroelastic media of the one derived in Task 3.0 for single porosity media. We describe two simulations to provide model verification and application examples. The first, one-dimensional consolidation of a double-porosity medium, is compared to an analytical solution. The second is a match of published results from the literature, a simulation of CO 2 injection into hypothetical aquifer-caprock systems.« less
 [1] ;  [2] ;  [1] ;  [1] ;  [3] ;  [3] ;  [1] ;  [1]
  1. Colorado School of Mines, Golden, CO (United States)
  2. Univ. of California, Riverside, CA (United States)
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
OSTI Identifier:
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Colorado School of Mines, Golden, CO (United States)
Sponsoring Org:
Country of Publication:
United States