skip to main content

Title: Investigation of the Distribution of Fission Products Silver, Palladium and Cadmium in Neutron Irradiated SIC using a Cs Corrected HRTEM

Electron microscopy examinations of selected coated particles from the first advanced gas reactor experiment (AGR-1) at Idaho National Laboratory (INL) provided important information on fission product distribution and chemical composition. Furthermore, recent research using STEM analysis led to the discovery of Ag at SiC grain boundaries and triple junctions. As these Ag precipitates were nano-sized, high resolution transmission electron microscopy (HRTEM) examination was used to provide more information at the atomic level. This paper describes some of the first HRTEM results obtained by examining a particle from Compact 4-1-1, which was irradiated to an average burnup of 19.26% fissions per initial metal atom (FIMA), a time average, volume-averaged temperature of 1072°C; a time average, peak temperature of 1182°C and an average fast fluence of 4.13 x 1021 n/cm2. Based on gamma analysis, it is estimated that this particle may have released as much as 10% of its available Ag-110m inventory during irradiation. The HRTEM investigation focused on Ag, Pd, Cd and U due to the interest in Ag transport mechanisms and possible correlation with Pd, Ag and U previously found. Additionally, Compact 4-1-1 contains fuel particles fabricated with a different fuel carrier gas composition and lower deposition temperatures for themore » SiC layer relative to the Baseline fabrication conditions, which are expected to reduce the concentration of SiC defects resulting from uranium dispersion. Pd, Ag, and Cd were found to co-exist in some of the SiC grain boundaries and triple junctions whilst U was found to be present in the micron-sized precipitates as well as separately in selected areas at grain boundaries. This study confirmed the presence of Pd both at inter- and intragranular positions; in the latter case specifically at stacking faults. Small Pd nodules were observed at a distance of about 6.5 micron from the inner PyC/SiC interface.« less
Authors:
; ;
Publication Date:
OSTI Identifier:
1166034
Report Number(s):
INL/CON-14-32412
DOE Contract Number:
DE-AC07-05ID14517
Resource Type:
Conference
Resource Relation:
Conference: HTR2014,Weihai, China,10/27/2014,10/31/2014
Research Org:
Idaho National Laboratory (INL)
Sponsoring Org:
DOE - NE
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS HRTEM; NGNP; TDO; VHTR