skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: 3D Reconstruction of Biological Organization and Mineralization in Sediment Attached Biofilms During Uranium Bioremediation

Abstract

Of central interest in this study were microbial communities attached to sediment particles and in associated groundwater. Are the communities similar? What do the organisms look like and how do they associated with each other? Research was conducted on samples collected from the Department of Energy's (DOE) Rifle Integrated Field Research Challenge (IFRC) site in Rifle, Colorado, USA. This site served first as a test case for in situ bioremediation via biostimulation, and more recently as a location for studying the role of microbial communities in the carbon and other linked biogeochemical cycles. We addressed the question of the nature of planktonic to sediment-attached microbial communities using field and laboratory experimental studies with a range of methods that provide 2- and 3-dimensional topological information coupled to information about chemical speciation, organism type, and activity levels. The research leveraged data from metagenomics and proteomics analyses that obtained through parallel work at the Rifle site in the context of the IFRC. In this project we integrated characterization methods with extensive genomic sequence information and associated environmental data to better understand the processes that occur within groundwater and sediment-attached communities. Notable is the range of characterization methods, including scanning transmission x-ray microscopy (STXM),more » micro-EXAFS/XANES and microdiffraction and 2D and 3D cryo-electron tomographic analysis, and high-resolutino transmission electron microscope (HRTEM) analysis to characterize these natural microbial communities. A cryo-TEM work was unique because samples for electron microscopic characterization were cryo-plunged directly on site immediately after sampling. This step minimizes post-collection alterations, including cell damages and change of redox state. Among many achievements documented in publications listed at the end of this report, we highlight the following: 1) The development of a platform for routine correlative cryogenic microscopy and spectroscopy with samples prepared on-site. 2) The determination of which organisms dominate planktonic and biofilm communities in the subsurface. 3) Identification of microorganism-mineral associations and discovery of a novel mechanism that sustains activity of iron-reducing bacteria. 4) The detection of bacteria from the OP11-OD1-WWE3 (etc.) radiation and elucidation of their remarkable structural organization by cryog-TEM cryo-electron tomograhpy (cryo-ET). 5) Extensive analysis of biofilms and documentation of the association of cells and Se minerals. 6) The comparison of expressed c-type cytochromes between pure cultures of G. bemidjiensis and related field populations, provided insight into possible molecular mechanisms for U(VI) reduction in the aquifer. At least sixteen publications will result from this project (partial support), which provide both graduate student and post doctoral training.« less

Authors:
; ;
Publication Date:
Research Org.:
Univ. of California, Oakland, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1163913
Report Number(s):
DOE-UCB-4733
DOE Contract Number:  
SC0004733
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English

Citation Formats

Banfield, Jillian, Comolli, Luis R., and Singer, Steve. 3D Reconstruction of Biological Organization and Mineralization in Sediment Attached Biofilms During Uranium Bioremediation. United States: N. p., 2014. Web.
Banfield, Jillian, Comolli, Luis R., & Singer, Steve. 3D Reconstruction of Biological Organization and Mineralization in Sediment Attached Biofilms During Uranium Bioremediation. United States.
Banfield, Jillian, Comolli, Luis R., and Singer, Steve. 2014. "3D Reconstruction of Biological Organization and Mineralization in Sediment Attached Biofilms During Uranium Bioremediation". United States.
@article{osti_1163913,
title = {3D Reconstruction of Biological Organization and Mineralization in Sediment Attached Biofilms During Uranium Bioremediation},
author = {Banfield, Jillian and Comolli, Luis R. and Singer, Steve},
abstractNote = {Of central interest in this study were microbial communities attached to sediment particles and in associated groundwater. Are the communities similar? What do the organisms look like and how do they associated with each other? Research was conducted on samples collected from the Department of Energy's (DOE) Rifle Integrated Field Research Challenge (IFRC) site in Rifle, Colorado, USA. This site served first as a test case for in situ bioremediation via biostimulation, and more recently as a location for studying the role of microbial communities in the carbon and other linked biogeochemical cycles. We addressed the question of the nature of planktonic to sediment-attached microbial communities using field and laboratory experimental studies with a range of methods that provide 2- and 3-dimensional topological information coupled to information about chemical speciation, organism type, and activity levels. The research leveraged data from metagenomics and proteomics analyses that obtained through parallel work at the Rifle site in the context of the IFRC. In this project we integrated characterization methods with extensive genomic sequence information and associated environmental data to better understand the processes that occur within groundwater and sediment-attached communities. Notable is the range of characterization methods, including scanning transmission x-ray microscopy (STXM), micro-EXAFS/XANES and microdiffraction and 2D and 3D cryo-electron tomographic analysis, and high-resolutino transmission electron microscope (HRTEM) analysis to characterize these natural microbial communities. A cryo-TEM work was unique because samples for electron microscopic characterization were cryo-plunged directly on site immediately after sampling. This step minimizes post-collection alterations, including cell damages and change of redox state. Among many achievements documented in publications listed at the end of this report, we highlight the following: 1) The development of a platform for routine correlative cryogenic microscopy and spectroscopy with samples prepared on-site. 2) The determination of which organisms dominate planktonic and biofilm communities in the subsurface. 3) Identification of microorganism-mineral associations and discovery of a novel mechanism that sustains activity of iron-reducing bacteria. 4) The detection of bacteria from the OP11-OD1-WWE3 (etc.) radiation and elucidation of their remarkable structural organization by cryog-TEM cryo-electron tomograhpy (cryo-ET). 5) Extensive analysis of biofilms and documentation of the association of cells and Se minerals. 6) The comparison of expressed c-type cytochromes between pure cultures of G. bemidjiensis and related field populations, provided insight into possible molecular mechanisms for U(VI) reduction in the aquifer. At least sixteen publications will result from this project (partial support), which provide both graduate student and post doctoral training.},
doi = {},
url = {https://www.osti.gov/biblio/1163913}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Nov 17 00:00:00 EST 2014},
month = {Mon Nov 17 00:00:00 EST 2014}
}

Technical Report:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that may hold this item. Keep in mind that many technical reports are not cataloged in WorldCat.

Save / Share: