skip to main content

SciTech ConnectSciTech Connect

Title: Modeling and Analysis of UN TRISO Fuel for LWR Application Using the PARFUME Code

The Idaho National Laboraroty (INL) PARFUME (particle fuel model) code was used to assess the overall fuel performance of uranium nitride (UN) tristructural isotropic (TRISO) ceramic fuel under irradiation conditions typical of a Light Water Reactor (LWR). The dimensional changes of the fuel particle layers and kernel were calculated, including the formation of an internal gap. The survivability of the UN TRISO particle was estimated depending on the strain behavior of the constituent materials at high fast fluence and burn up. For nominal cases, internal gas pressure and representative thermal profiles across the kernel and layers were determined along with stress levels in the inner and outer pyrolytic carbon (IPyC/OPyC) and silicon carbide (SiC) layers. These parameters were then used to evaluate fuel particle failure probabilities. Results of the study show that the survivability of UN TRISO fuel under LWR irradiation conditions might only be guaranteed if the kernel and PyC swelling rates are limited at high fast fluence and burn up. These material properties have large uncertainties at the irradiation levels expected to be reached by UN TRISO fuel in LWRs. Therefore, a large experimental effort would be needed to establish material properties, including kernel and PyC swelling rates,more » under these conditions before definitive conclusions can be drawn on the behavior of UN TRISO fuel in LWRs.« less
Authors:
Publication Date:
OSTI Identifier:
1156908
Report Number(s):
INL/JOU-14-31022
Journal ID: ISSN 0022-3115
DOE Contract Number:
DE-AC07-05ID14517
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Nuclear Materials; Journal Volume: 451; Journal Issue: 1-3
Publisher:
Elsevier
Research Org:
Idaho National Laboratory (INL)
Sponsoring Org:
DOE - NE
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS AGR; Light Water Reactor; NGNP; PARFUME; TDO; TRISO; VHTR