skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: He-Ion and Self-Atom Induced Damage and Surface-Morphology Changes of a Hot W Target

Conference ·
OSTI ID:1154770

We report results of measurements on the evolution of the surface morphology of a hot tungsten surface due to impacting low-energy (80 12,000 eV) He ions and of simulations of damage caused by cumulative bombardment of 1 and 10 keV W self-atoms. The measurements were performed at the ORNL Multicharged Ion Research Facility (MIRF), while the simulations were done at the Kraken supercomputing facility of the University of Tennessee. At 1 keV, the simulations show strong defect-recombination effects that lead to a saturation of the total defect number after a few hundreds impacts, while sputtering leads to an imbalance of the vacancy and interstitial number. On the experimental side, surface morphology changes were investigated over a broad range of fluences for both virgin and pre-damaged W-targets. At the lowest accumulated fluences, small surface-grain features and near-surface He bubbles are observed. At the largest fluences, individual grain characteristics disappear in FIB/SEM scans, and the entire surface is covered by a multitude of near-surface bubbles with a broad range of sizes, and disordered whisker growth, while in top-down SEM imaging the surface is virtually indistinguishable from the nano-fuzz produced on linear plasma devices. These features are evident at progressively lower fluences as the He-ion energy is increased.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Multicharged Ion Research Facility (MIRF)
Sponsoring Organization:
USDOE Laboratory Directed Research and Development (LDRD) Program
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1154770
Resource Relation:
Conference: 14th International Conference on Plasma-Facing Materials and Components for Fusion Applications (PMFC-14), J lich, Germany, 20130513, 20130517
Country of Publication:
United States
Language:
English