skip to main content

SciTech ConnectSciTech Connect

Title: Stress Intensity of Delamination in a Sintered-Silver Interconnection: Preprint

In automotive power electronics packages, conventional thermal interface materials such as greases, gels, and phase-change materials pose bottlenecks to heat removal and are also associated with reliability concerns. The industry trend is toward high thermal performance bonded interfaces for large-area attachments. However, because of coefficient of thermal expansion mismatches between materials/layers and resultant thermomechanical stresses, adhesive and cohesive fractures could occur, posing a reliability problem. These defects manifest themselves in increased thermal resistance. This research aims to investigate and improve the thermal performance and reliability of sintered-silver for power electronics packaging applications. This has been experimentally accomplished by the synthesis of large-area bonded interfaces between metalized substrates and copper base plates that have subsequently been subjected to thermal cycles. A finite element model of crack initiation and propagation in these bonded interfaces will allow for the interpretation of degradation rates by a crack-velocity (V)-stress intensity factor (K) analysis. A description of the experiment and the modeling approach are discussed.
Authors:
; ;
Publication Date:
OSTI Identifier:
1150186
Report Number(s):
NREL/CP-5400-61598
DOE Contract Number:
AC36-08GO28308
Resource Type:
Conference
Resource Relation:
Conference: Presented at IMAPS/HiTEC, 13-15 May 2014, Albuquerque, New Mexico
Research Org:
National Renewable Energy Laboratory (NREL), Golden, CO.
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy Vehicle Technologies Office
Country of Publication:
United States
Language:
English
Subject:
33 ADVANCED PROPULSION SYSTEMS; 30 DIRECT ENERGY CONVERSION BONDED INTERFACES; SINTERED-SILVER; RELIABILITY; DELAMINATION; STRESS INTENSITY; Transportation