skip to main content

Title: Neutron diffraction and electrochemical studies of Na0.79(Co,Mn)O2 cathodes for sodium-ion batteries

Na0.79CoO2 and Na0.79Co0.7Mn0.3O2 with a layered hexagonal structure (P2-type) were synthesized by the Pechini process followed by heat treatment at elevated temperatures in order to achieve the crystalline phases. The samples were characterized with x-ray diffraction, neutron diffraction, magnetic measurements and electrochemical charge-discharge cycling. X-ray diffraction confirmed the P2 layered hexagonal structure after heat treatment at 900 C in air. Neutron diffraction patterns confirm Mn doping on Co sites without forming pronounced Mn-Co ordering. Cyclic voltammetry showed the oxidation and reduction peaks of Co and Mn, indicating the intercalation and de-intercalation behavior of the Na ions. A discharge capacity of 60 mAh/g was achieved for both the compositions, with the Na0.79Co0.70Mn0.3O2 composition showing a more stable discharge capacity up to 60 cycles.
 [1] ;  [2] ;  [2] ;  [2] ;  [3] ;  [4] ;  [4] ;  [2] ;  [1]
  1. National Energy Technology Laboratory (NETL)
  2. ORNL
  3. Oak Ridge National Laboratory (ORNL)
  4. University of Texas at Austin
Publication Date:
OSTI Identifier:
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of the Electrochemical Society; Journal Volume: 161; Journal Issue: 6
Research Org:
Oak Ridge National Laboratory (ORNL); Spallation Neutron Source
Sponsoring Org:
SC USDOE - Office of Science (SC)
Country of Publication:
United States