skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Work Domain Analysis of a Predecessor Sodium-cooled Reactor as Baseline for AdvSMR Operational Concepts

Abstract

This report presents the results of the Work Domain Analysis for the Experimental Breeder Reactor (EBR-II). This is part of the phase of the research designed to incorporate Cognitive Work Analysis in the development of a framework for the formalization of an Operational Concept (OpsCon) for Advanced Small Modular Reactors (AdvSMRs). For a new AdvSMR design, information obtained through Cognitive Work Analysis, combined with human performance criteria, can and should be used in during the operational phase of a plant to assess the crew performance aspects associated with identified AdvSMR operational concepts. The main objective of this phase was to develop an analytical and descriptive framework that will help systems and human factors engineers to understand the design and operational requirements of the emerging generation of small, advanced, multi-modular reactors. Using EBR-II as a predecessor to emerging sodium-cooled reactor designs required the application of a method suitable to the structured and systematic analysis of the plant to assist in identifying key features of the work associated with it and to clarify the operational and other constraints. The analysis included the identification and description of operating scenarios that were considered characteristic of this type of nuclear power plant. This is anmore » invaluable aspect of Operational Concept development since it typically reveals aspects of future plant configurations that will have an impact on operations. These include, for example, the effect of core design, different coolants, reactor-to-power conversion unit ratios, modular plant layout, modular versus central control rooms, plant siting, and many more. Multi-modular plants in particular are expected to have a significant impact on overall OpsCon in general, and human performance in particular. To support unconventional modes of operation, the modern control room of a multi-module plant would typically require advanced HSIs that would provide sophisticated operational information visualization, coupled with adaptive automation schemes and operator support systems to reduce complexity. These all have to be mapped at some point to human performance requirements. The EBR-II results will be used as a baseline that will be extrapolated in the extended Cognitive Work Analysis phase to the analysis of a selected advanced sodium-cooled SMR design as a way to establish non-conventional operational concepts. The Work Domain Analysis results achieved during this phase have not only established an organizing and analytical framework for describing existing sociotechnical systems, but have also indicated that the method is particularly suited to the analysis of prospective and immature designs. The results of the EBR-II Work Domain Analysis have indicated that the methodology is scientifically sound and generalizable to any operating environment.« less

Authors:
; ;
Publication Date:
Research Org.:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Org.:
DOE - NE
OSTI Identifier:
1149005
Report Number(s):
INL/EXT-14-31562
DOE Contract Number:  
DE-AC07-05ID14517
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; Advanced SMR; Cognitive Work Analysis; Human Factors Engineering; Operational Concepts; Work Domain Analysis

Citation Formats

Farris, Ronald, Gertman, David, and Hugo, Jacques. Work Domain Analysis of a Predecessor Sodium-cooled Reactor as Baseline for AdvSMR Operational Concepts. United States: N. p., 2014. Web. doi:10.2172/1149005.
Farris, Ronald, Gertman, David, & Hugo, Jacques. Work Domain Analysis of a Predecessor Sodium-cooled Reactor as Baseline for AdvSMR Operational Concepts. United States. https://doi.org/10.2172/1149005
Farris, Ronald, Gertman, David, and Hugo, Jacques. 2014. "Work Domain Analysis of a Predecessor Sodium-cooled Reactor as Baseline for AdvSMR Operational Concepts". United States. https://doi.org/10.2172/1149005. https://www.osti.gov/servlets/purl/1149005.
@article{osti_1149005,
title = {Work Domain Analysis of a Predecessor Sodium-cooled Reactor as Baseline for AdvSMR Operational Concepts},
author = {Farris, Ronald and Gertman, David and Hugo, Jacques},
abstractNote = {This report presents the results of the Work Domain Analysis for the Experimental Breeder Reactor (EBR-II). This is part of the phase of the research designed to incorporate Cognitive Work Analysis in the development of a framework for the formalization of an Operational Concept (OpsCon) for Advanced Small Modular Reactors (AdvSMRs). For a new AdvSMR design, information obtained through Cognitive Work Analysis, combined with human performance criteria, can and should be used in during the operational phase of a plant to assess the crew performance aspects associated with identified AdvSMR operational concepts. The main objective of this phase was to develop an analytical and descriptive framework that will help systems and human factors engineers to understand the design and operational requirements of the emerging generation of small, advanced, multi-modular reactors. Using EBR-II as a predecessor to emerging sodium-cooled reactor designs required the application of a method suitable to the structured and systematic analysis of the plant to assist in identifying key features of the work associated with it and to clarify the operational and other constraints. The analysis included the identification and description of operating scenarios that were considered characteristic of this type of nuclear power plant. This is an invaluable aspect of Operational Concept development since it typically reveals aspects of future plant configurations that will have an impact on operations. These include, for example, the effect of core design, different coolants, reactor-to-power conversion unit ratios, modular plant layout, modular versus central control rooms, plant siting, and many more. Multi-modular plants in particular are expected to have a significant impact on overall OpsCon in general, and human performance in particular. To support unconventional modes of operation, the modern control room of a multi-module plant would typically require advanced HSIs that would provide sophisticated operational information visualization, coupled with adaptive automation schemes and operator support systems to reduce complexity. These all have to be mapped at some point to human performance requirements. The EBR-II results will be used as a baseline that will be extrapolated in the extended Cognitive Work Analysis phase to the analysis of a selected advanced sodium-cooled SMR design as a way to establish non-conventional operational concepts. The Work Domain Analysis results achieved during this phase have not only established an organizing and analytical framework for describing existing sociotechnical systems, but have also indicated that the method is particularly suited to the analysis of prospective and immature designs. The results of the EBR-II Work Domain Analysis have indicated that the methodology is scientifically sound and generalizable to any operating environment.},
doi = {10.2172/1149005},
url = {https://www.osti.gov/biblio/1149005}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Sat Mar 01 00:00:00 EST 2014},
month = {Sat Mar 01 00:00:00 EST 2014}
}