skip to main content

Title: Interfacial Properties and Design of Functional Energy Materials

The vital importance of energy to society continues to demand a relentless pursuit of energy responsive materials that can bridge fundamental chemical structures at the molecular level and achieve improved functionality, such as efficient energy conversion/storage/transmission, over multiple length scales. This demand can potentially be realized by harnessing the power of self-assembly a spontaneous process where molecules or much larger entities form ordered aggregates as a consequence of predominately non-covalent (weak) interactions. Self-assembly is the key to bottom-up design of molecular devices, because the nearly atomic-level control is very difficult to realize in a top-down, e.g., lithographic approach. However, while function (e.g., charge mobility) in simple systems such as single crystals can often be predicted, predicting the function of the great variety of self-assembled molecular architectures is complicated by the lack of understanding and control over nanoscale interactions, mesoscale architectures, and macroscale (long-range) order. To establish a foundation toward delivering practical solutions, it is critical to develop an understanding of the chemical and physical mechanisms responsible for the self-assembly of molecular and hybrid materials on various substrates. Typically molecular self-assembly involves poorly understood non-covalent intermolecular and substrate-molecule interactions compounded by local and/or collective influences from the substrate atomic lattice (symmetrymore » and/or topological features) and electronic structure. Thus, progress towards unraveling the underlying physicochemical processes that control the structure and macroscopic physical, mechanical, electrical, and transport properties of materials increasingly requires tight integration of theory, modeling and simulation with precision synthesis, advanced experimental characterization, and device measurements. In this mode, theory and simulation can greatly accelerate the process of materials discovery by providing atomic level understanding of physicochemical phenomena and for making predictions of trends. In particular, this approach can provide understanding, prediction and exploration of new materials and conditions before they are realized in the lab, to illuminate connections between experimental observations, and help identify new materials for targeted synthesis. Toward this end, Density Functional Theory (DFT) can provide a suitable computational framework for investigating the inter- and intramolecular bonding, molecular conformation, charge and spin configurations that are intrinsic to self-assembly of molecules on substrates. This Account highlights recent advances in using an integrated approach based on DFT and scanning probe microscopy [STM(s), AFM] to study/develop electronic materials formed from the self-assembly of molecules into supramolecular or polymeric architectures on substrates. Here it is the interplay between molecular interactions and surface electrons that is used to control the final architecture and subsequent bulk properties of the two-dimensional patterns/assemblies. Indeed a rich variety of functional energy materials become possible.« less
 [1] ;  [1] ;  [2] ;  [2]
  1. ORNL
  2. Rensselaer Polytechnic Institute (RPI)
Publication Date:
OSTI Identifier:
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Accounts of Chemical Research; Journal Volume: 47; Journal Issue: 11
Research Org:
Oak Ridge National Laboratory (ORNL); Center for Nanophase Materials Sciences (CNMS); Oak Ridge Leadership Computing Facility (OLCF)
Sponsoring Org:
SC USDOE - Office of Science (SC)
Country of Publication:
United States