skip to main content

Title: Inorganic Chemistry Solutions to Semiconductor Nanocrystal Problems

The optoelectronic and chemical properties of semiconductor nanocrystals heavily depend on their composition, size, shape and internal structure, surface functionality, etc. Available strategies to alter these properties through traditional colloidal syntheses and ligand exchange methods place a premium on specific reaction conditions and surfactant combinations. In this invited review, we apply a molecular-level understanding of chemical precursor reactivity to reliably control the morphology, composition and intimate architecture (core/shell vs. alloyed) of semiconductor nanocrystals. We also describe our work aimed at achieving highly selective, low-temperature photochemical methods for the synthesis of semiconductor–metal and semiconductor–metal oxide photocatalytic nanocomposites. In addition, we describe our work on surface modification of semiconductor nanocrystal quantum dots using new approaches and methods that bypass ligand exchange, retaining the nanocrystal's native ligands and original optical properties, as well as on spectroscopic methods of characterization useful in determining surface ligand organization and chemistry. Using recent examples from our group and collaborators, we demonstrate how these efforts have lead to faster, wider and more systematic application of semiconductor nanocrystal-based materials to biological imaging and tracking, and to photocatalysis of unconventional substrates. We believe techniques and methods borrowed from inorganic chemistry (including coordination, organometallic and solid state chemistry) have much tomore » offer in reaching a better understanding of the synthesis, functionalization and real-life application of such exciting materials as semiconductor nanocrystals (quantum dots, rods, tetrapods, etc.).« less
 [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Ames Laboratory
Publication Date:
OSTI Identifier:
Report Number(s):
IS-J 8263
Journal ID: ISSN 0010-8545
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Coordination Chemistry Reviews; Journal Volume: 263-264
Research Org:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
36 MATERIALS SCIENCE; Bottom-up nanofabrication; Molecular programming; Chemical reactivity; Photodeposition; Photocatalysis; Surface functionalization; Quantum dot valence