skip to main content

Title: Evaluation of Gas Retention in Waste Simulants: Tall Column Experiments

Gas generation in Hanford’s underground waste storage tanks can lead to gas accumulation within the layer of settled solids (sludge) at the tank bottom. The gas, which typically has hydrogen as the major component together with other flammable species, is formed principally by radiation-driven chemical reactions. Accumulation of these gases within the sludge in a waste tank is undesirable and limits the amount of tank volume for waste storage. Further, accumulation of large amounts of gas in the sludge may potentially result in an unacceptable release of the accumulated gas if the sludge-layer density is reduced to less than that of the overlying sludge or that of the supernatant liquid. Rapid release of large amounts of flammable gases could endanger personnel and equipment near the tank. For this reason, a thorough understanding of the circumstances that can lead to a potentially problematic gas accumulation in sludge layers is needed. To respond to this need, the Deep Sludge Gas Release Event Program (DSGREP) was commissioned to examine gas release behavior in sludges.
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
PNNL-23340; DSGREP-RPT-005, Rev.0
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org:
Country of Publication:
United States
Gas retention; waste storage; simulant