skip to main content

Title: Progress Report on Alloy 617 Isochronous Stress-Strain Curves

Isochronous stress-strain curves for Alloy 617 up to a temperature of 1000°C will be required to qualify the material for elevated temperature design in Section III, Division 1, Subsection NH of the ASME Boiler and Pressure Vessel Code. Several potential methods for developing these curves are reviewed in this report. It is shown that in general power-law creep is the rate controlling deformation mechanism for a wide range of alloy heats, test temperatures and stresses. Measurement of the strain rate sensitivity of Alloy 617 indicates that the material is highly strain rate sensitive in the tensile deformation range above about 750°C. This suggests that the concept of a hot tensile curve as a bounding case on the isochronous stress-strain diagrams is problematic. The impact of strain rate on the hot tensile curves is examined and it is concluded that incorporating such a curve is only meaningful if a single tensile strain rate (typically the ASTM standard rate of 0.5%/min) is arbitrarily defined. Current experimentally determined creep data are compared to isochronous stress-strain curves proposed previously by the German programs in the 1980s and by the 1990 draft ASME Code Case. Variability in how well the experimental data are represented bymore » the proposed design curves that suggests further analysis is necessary prior to completing a new draft Code Case.« less
Authors:
; ;
Publication Date:
OSTI Identifier:
1134841
Report Number(s):
INL/EXT-14-31580
DOE Contract Number:
DE-AC07-05ID14517
Resource Type:
Technical Report
Research Org:
Idaho National Laboratory (INL)
Sponsoring Org:
DOE - NE
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS Alloy 617; Isochronous; SMR