skip to main content

Title: Molecular dynamics simulations of intergranular fracture in UO2 with nine empirical interatomic potentials

The intergranular fracture behavior of UO2 was studied using molecular dynamics simulations with a bicrystal model. The anisotropic fracture behavior due to the different grain boundary characters was investigated with the View the MathML source symmetrical tilt S5 and the View the MathML source symmetrical tilt S3 ({1 1 1} twin) grain boundaries. Nine interatomic potentials, seven rigid-ion plus two core–shell ones, were utilized to elucidate possible potential dependence. Initiating from a notch, crack propagation along grain boundaries was observed for most potentials. The S3 boundary was found to be more prone to fracture than the S5 one, indicated by a lower energy release rate associated with the former. However, some potential dependence was identified on the existence of transient plastic deformation at crack tips, and the results were discussed regarding the relevant material properties including the excess energies of metastable phases and the critical energy release rate for intergranular fracture. In general, local plasticity at crack tips was observed in fracture simulations with potentials that predict low excess energies for metastable phases and high critical energy release rates for intergranular fracture.
; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 0022-3115
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Nuclear Materials; Journal Volume: 452; Journal Issue: 1 - 3
Research Org:
Idaho National Laboratory (INL)
Sponsoring Org:
Country of Publication:
United States
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; 36 MATERIALS SCIENCE interatomic potential; intergranular fracture; molecular dynamics simulations; Uranium dioxide