skip to main content

Title: Stress and Diffusion in Stored Pu ZPPR Fuel from Alpha Generation

ZPPR (Zero Power Physics Reactor) is a research reactor that has been used to investigate breeder reactor fuel designs. The reactor has been dismantled but its fuel is still stored there. Of concern are its plutonium containing metal fuel elements which are enclosed in stainless steel cladding with gas space filled with helium–argon gas and welded air tight. The fuel elements which are 5.08 cm by 0.508 cm up to 20.32 cm long (2 in × 0.2 in × 8 in) were manufactured in 1968. A few of these fuel elements have failed releasing contamination raising concern about the general state of the large number of other fuel elements. Inspection of the large number of fuel elements could lead to contamination release so analytical studies have been conducted to estimate the probability of failed fuel elements. This paper investigates the possible fuel failures due to generation of helium in the metal fuel from the decay of Pu and its possible damage to the fuel cladding from metal fuel expansion or from diffusion of helium into the fuel gas space. This paper (1) calculates the initial gas loading in a fuel element and its internal free volume after it has beenmore » brought into the atmosphere at ZPPR, (2) shows that the amount of helium generated by decay of Pu over 46 years since manufacture is significantly greater than this initial loading, (3) determines the amount of fuel swelling if the helium stays fixed in the fuel plate and estimates the amount of helium which diffuses out of the fuel plate into the fuel plenum assuming the helium does not remain fixed in the fuel plate but can diffuse to the plenum and possibly through the cladding. Since the literature is not clear as to which possibility occurs, as with Schroedinger’s cat, both possibilities are analyzed. The paper concludes that (1) if the gas generated is fixed in the fuel, then the fuel swelling it can cause would not cause any fuel failure and (2) if the helium does diffuse out of the fuel (in accordance diffusivities estimated from the literature), then it is unlikely that fuel element bulging will occur.« less
; ;
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 0017-9310
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Heat and Mass Transfer; Journal Volume: 74
Research Org:
Idaho National Laboratory (INL)
Sponsoring Org:
Country of Publication:
United States
99 GENERAL AND MISCELLANEOUS Gas diffusion in metal; High Pu content nuclear fuel; Metal fuel failure in long term storage; Metal fuel swelling stress; ZPPR