skip to main content

Title: State of Supported Pd during Catalysis in Water

In operando X-ray absorption was used to measure the structure and chemical state of supported Pd nanoparticles with 3 -10 nm diameter in contact with H2 saturated water at 298-473 K. The Pd-Pd distances determined were consistent with the presence of subsurface hydrogen, i.e., longer than those measured by others for bare, reduced Pd particles, and within the range of distances for Pd hydrides. During the Pd-catalyzed hydrogenation of phenol, cyclohexanone, cyclohexanol or cyclohexene in the presence of water, the Pd nanoparticles exhibited a lengthening of the Pd-Pd bond that we attribute to a change in the concentration of sorbed H related to the steady state of H at the surface of the Pd particles. This steady state is established by all reactions involving H2, i.e., the sorption/desorption into the bulk, the sorption at the surface, and the reaction with adsorbed unsaturated reactants. Thus, first insight into the chemical state of Pd and the H/Pd ratio during catalysis in water is provided. The Pd particles did not change upon their exposure to water or reactants; nor did the spectra show any effect from the interaction of the Pd particles with various supports. The experimental results are consistent with ab initiomore » molecular dynamic simulations, which indicate that Pd-water interactions are relatively weak for Pd metal and that these interactions become even weaker, when hydrogen is incorporated into the metal particles. This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is a multi-program national laboratory operated for DOE by Battelle through Contract DE-AC05-76RL01830.« less
; ; ; ; ; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Physical Chemistry C, 117(34):17603-17612
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US)
Sponsoring Org:
Country of Publication:
United States
Xray Absorbance Spectroscopy; hydrodeoxygenation; palladiium; nanoparticles