skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electron Flow in Multiheme Bacterial Cytochromes is a Balancing Act Between Heme Electronic Interaction and Redox Potentials

Journal Article · · Proceedings of the National Academy of Sciences of the United States of America, 111(2):611-616

The naturally widespread process of electron transfer from metal reducing bacteria to extracellular solid metal oxides entails unique biomolecular machinery optimized for long-range electron transport. To perform this function efficiently microorganisms have adapted multi-heme c-type cytochromes to arrange heme cofactors into wires that cooperatively span the cellular envelope, transmitting electrons along distances greater than 100 Angstroms. Implications and opportunities for bionanotechnological device design are self-evident. However, at the molecular level how these proteins shuttle electrons along their heme wires, navigating intraprotein intersections and interprotein interfaces effciently, remains a mystery so far inaccessible to experiment. To shed light on this critical topic, we carried out extensive computer simulations to calculate Marcus theory quantities for electron transfer along the ten heme cofactors in the recently crystallized outer membrane cytochrome MtrF. The combination of electronic coupling matrix elements with free energy calculations of heme redox potentials and reorganization energies for heme-to-heme electron transfer allows the step-wise and overall electron transfer rate to be estimated and understood in terms of structural and dynamical characteristics of the protein. By solving a master equation for electron hopping, we estimate an intrinsic, maximum possible electron flux through solvated MtrF of 104-105 s-1, consistent with recently measured rates for the related MtrCAB protein complex. Intriguingly, this flux must navigate thermodynamically uphill steps past low potential hemes. Our calculations show that the rapid electron transport through MtrF is the result of a clear correlation between heme redox potential and the strength of electronic coupling along the wire: Thermodynamically uphill steps occur only between electronically well connected stacked heme pairs. This suggests that the protein evolved to harbor low potential hemes, presumably necessary for reduction of certain soluble substrates, without slowing down electron ow. These findings are particularly profound in light of the apparently well conserved staggered cross heme wire structural motif in functionally related outer-membrane proteins.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1130181
Report Number(s):
PNNL-SA-100545; 48205; KP1702030
Journal Information:
Proceedings of the National Academy of Sciences of the United States of America, 111(2):611-616, Journal Name: Proceedings of the National Academy of Sciences of the United States of America, 111(2):611-616
Country of Publication:
United States
Language:
English