skip to main content

Title: Spatially resolved chemical imaging of individual atmospheric particles using nanoscale imaging mass spectrometry: Insighs into particle origin and chemistry

Knowledge of the spatially-resolved composition of atmospheric particles is essential for differentiating between their surface versus bulk chemistry, understanding particle reactivity and the potential environmental impact. We demonstrate the application of nanometer-scale secondary ion mass spectrometry (Cameca NanoSIMS 50 ion probe) for 3D chemical imaging of individual atmospheric particles without any sample pre-treatment, such as the sectioning of particles. Use of NanoSIMS depth profile analysis enables elemental mapping of particles with nanometer spatial resolution over a broad of range of particle sizes. We have used this technique to probe spatially resolved composition of ambient particles collected during a field campaign in Mexico City. Particles collected during this campaign have been extensively characterized in the past using other particle analysis techniques and hence offer a unique opportunity for exploring the utility of depth resolved chemical imaging in ambient particle research. 1 Particles examined in this study include those collected during a pollution episode related to urban waste incineration as well as background particles from the same location prior to the episode. Particles from the pollution episode show substantial intra-particle compositional variability typical of particles resulting from multiple emission sources. In contrast, the background particles have relatively homogeneous compositions with enhanced presencemore » of nitrogen, oxygen and chlorine at the particle surface. The observed surface enhancement of nitrogen and oxygen species is consistent with the presence of surface nitrates resulting from gas-particle heterogeneous interactions and is indicative of atmospheric ageing of the particles. The results presented here illustrate 3D characterization of ambient particles for insights into their chemical history.« less
; ;
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Analytical Methods, 6(8):2413-2792
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org:
Country of Publication:
United States
particle analysis; NanoSIMS; internally mixed particles; Environmental Molecular Sciences Laboratory