skip to main content

Title: Evaluation of Deblur Methods for Radiography

Radiography is used as a primary diagnostic for dynamic experiments, providing timeresolved radiographic measurements of areal mass density along a line of sight through the experiment. It is well known that the finite spot extent of the radiographic source, as well as scattering, are sources of blurring of the radiographic images. This blurring interferes with quantitative measurement of the areal mass density. In order to improve the quantitative utility of this diagnostic, it is necessary to deblur or “restore” the radiographs to recover the “true” areal mass density from a radiographic transmission measurement. Towards this end, I am evaluating three separate methods currently in use for deblurring radiographs. I begin by briefly describing the problems associated with image restoration, and outlining the three methods. Next, I illustrate how blurring affects the quantitative measurements using radiographs. I then present the results of the various deblur methods, evaluating each according to several criteria. After I have summarized the results of the evaluation, I give a detailed account of how the restoration process is actually implemented.
Authors:
 [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
OSTI Identifier:
1126673
Report Number(s):
LA-UR-14-22041
DOE Contract Number:
AC52-06NA25396
Resource Type:
Technical Report
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING; Image Restoration Image Deblurring