skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: 55Fe effect on enhancing ferritic steel He/dpa ratio in fission reactor irradiations to simulate fusion conditions

Journal Article · · Fusion Engineering and Design, 88(11):2860-2864

How to increase the ferritic steel He(appm)/dpa ratio in a fission reactor neutron spectrum is an important question for fusion reactor material testing. An early experiment showed that the accelerated He(appm)/dpa ratio of about 2.3 was achieved for 96% enriched 54Fe in iron with 458.2 effective full power days (EFPD) irradiation in the High Flux Isotope Reactor (HFIR), ORNL. Greenwood suggested that the transmutation produced 55Fe has a thermal neutron helium production cross section which may have an effect on this result. In the current work, the ferritic steel He(appm)/dpa ratio is studied in the neutron spectrum of HFIR with 55Fe thermal neutron helium production taken into account. The available ENDF-b format 55Fe incident neutron cross section file from TENDL, Netherlands, is first input into the calculation model. A benchmark calculation for the same sample as used in the aforementioned experiment was used to adjust and evaluate the TENDL 55Fe (n, a) cross section values. The analysis shows a decrease of a factor of 6700 for the TENDL 55Fe (n, a) cross section in the intermediate and low energy regions is required in order to fit the experimental results. The best fit to the cross section value at thermal neutron energy is about 27 mb. With the adjusted 55Fe (n, a) cross sections, calculation show that the 54Fe and 55Fe isotopes can be enriched by the isotopic tailoring technique in a ferritic steel sample irradiated in HFIR to significantly enhance the helium production rate. The results show that a 70% enriched 54Fe and 30% enriched 55Fe ferritic steel sample would produce a He(appm)/dpa ratio of about 13 initially in the HFIR peripheral target position (PTP). After one year irradiation, the ratio decreases to about 10. This new calculation can be used to guide future isotopic tailoring experiments designed to increase the He(appm)/dpa ratio in fission reactors. A benchmark experiment is suggested to be performed to evaluate the 55Fe (n, a) cross section at thermal energy.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1126345
Report Number(s):
PNNL-SA-93985
Journal Information:
Fusion Engineering and Design, 88(11):2860-2864, Journal Name: Fusion Engineering and Design, 88(11):2860-2864
Country of Publication:
United States
Language:
English