skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Rolling hills on the core-mantle boundary

Journal Article · · Earth Planet. Sci. Lett.

Recent results suggest that an iron-rich oxide may have fractionally crystallized from a primordial magma ocean and settled on the core–mantle boundary (CMB). Based on experimental results, the presence of only a few percent of Fe-rich oxide could slow seismic waves down by several percent. This heavy layer can become highly undulating as predicted from dynamic modeling but can remain as a distinct structure with uniform velocity reductions. Here, we use the large USArray seismic network to search for such structures. Strong constraints on D" are provided by the core-phase SKS where it bifurcates, containing a short segment of P-wave diffractions (Pd) when crossing the CMB, called SKSd. Synthetics from models with moderate velocity drops (less than 10%) involving a layer with variable thickness, perhaps a composite of sharp small structures, with strong variation in thickness can explain both the observed SKSd waveforms and large scatter in differential times between SKKS and SKS. A smooth 3D image is obtained from inverting SKSd waveforms displaying rolling-hills with elongated dome-like structures sitting on the CMB. The most prominent one has an 80-km height, ~8° length, and ~4° width, thus adding still more structural complexity to the lower mantle. We suggest that these results can be explained by a dynamically-stabilized material containing small amounts (~5%) iron-rich (Mg,Fe)O providing a self-consistent physical interpretation.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Organization:
NSFOTHER
OSTI ID:
1126236
Journal Information:
Earth Planet. Sci. Lett., Vol. 361, Issue 01, 2013
Country of Publication:
United States
Language:
ENGLISH

Similar Records

Observations of Mantle Seismic Anisotropy Using Array Techniques: Shear-Wave Splitting of Beamformed SmKS Phases
Journal Article · Fri Dec 16 00:00:00 EST 2022 · Journal of Geophysical Research. Solid Earth · OSTI ID:1126236

Stability of Fe-bearing hydrous phases and element partitioning in the system MgO–Al2O3–Fe2O3–SiO2–H2O in Earth’s lowermost mantle
Journal Article · Fri Aug 02 00:00:00 EDT 2019 · Earth and Planetary Science Letters · OSTI ID:1126236

On the measurement of Sdiff splitting caused by lowermost mantle anisotropy
Journal Article · Fri Dec 09 00:00:00 EST 2022 · Geophysical Journal International · OSTI ID:1126236

Related Subjects