skip to main content

Title: Kinetics of the reduction of hematite (Fe{sub 2}O{sub 3}) by methane (CH{sub 4}) during chemical looping combustion: A global mechanism

Chemical-looping combustion (CLC) has emerged as a promising technology for fossil fuel combustion which produces a sequestration ready concentrated CO{sub 2} stream in power production. A CLC system is composed with two reactors, an air and a fuel reactor. An oxygen carrier such as hematite (94%Fe{sub 2}O{sub 3}) circulates between the reactors, which transfers the oxygen necessary for the fuel combustion from the air to the fuel. An important issue for the CLC process is the selection of metal oxide as oxygen carrier, since it must retain its reactivity through many cycles. The primary objective of this work is to develop a global mechanism with respective kinetics rate parameters such that CFD simulations can be performed for large systems. In this study, thermogravimetric analysis (TGA) of the reduction of hematite (Fe{sub 2}O{sub 3}) in a continuous stream of CH{sub 4} (15, 20, and 35%) was conducted at temperatures ranging from 700 to 825{degrees}C over ten reduction cycles. The mass spectroscopy analysis of product gas indicated the presence of CO{sub 2} and H{sub 2}O at the early stage of reaction and H{sub 2} and CO at the final stage of reactions. A kinetic model based on two parallel reactions, 1) first-ordermore » irreversible rate kinetics and 2) Avrami equation describing nucleation and growth processes, was applied to the reduction data. It was found, that the reaction rates for both reactions increase with, both, temperature and the methane concentration in inlet gas.« less
; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Chemical Engineering Journal; Journal Volume: 232
Research Org:
National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States). In-house Research; National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States)
Sponsoring Org:
USDOE Office of Fossil Energy (FE)
Country of Publication:
United States
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Chemical looping combution; Oxygen carriers; Kinetic rates