skip to main content

This content will become publicly available on May 26, 2016

Title: Off-Resonance Photosensitization of a Photorefractive Polymer Composite Using PbS Nanocrystals

The photosensitization of photorefractive polymeric composites for operation at 633 nm is accomplished through the inclusion of narrow band gap semiconductor nanocrystals composed of PbS. Unlike previous studies involving photosensitization of photorefractive polymer composites with inorganic nanocrystals, we employ an off-resonance approach where the first excitonic transition associated with the PbS nanocrystals lies at ~1220 nm and not the wavelength of operation. Using this methodology, internal diffraction efficiencies exceeding 82%, two-beam-coupling gain coefficients of 211 cm–1, and response times of 34 ms have been observed, representing some of the best figures of merit reported for this class of materials. Furthermore, these data demonstrate the ability of semiconductor nanocrystals to compete effectively with traditional organic photosensitizers. In addition to superior performance, this approach also offers an inexpensive and easy means by which to photosensitize composite materials. Additionally, the photoconductive characteristics of the composites used for this study will also be considered.
 [1] ;  [1] ;  [2] ;  [2] ;  [2] ;  [1] ;  [1]
  1. Missouri Univ. of Science and Technology, Rolla, MO (United States)
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 1932-7447; 491691
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 119; Journal Issue: 24; Journal ID: ISSN 1932-7447
American Chemical Society
Research Org:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States