skip to main content

Title: High performance graphics processor based computed tomography reconstruction algorithms for nuclear and other large scale applications.

The goal of this work is to develop a fast computed tomography (CT) reconstruction algorithm based on graphics processing units (GPU) that achieves significant improvement over traditional central processing unit (CPU) based implementations. The main challenge in developing a CT algorithm that is capable of handling very large datasets is parallelizing the algorithm in such a way that data transfer does not hinder performance of the reconstruction algorithm. General Purpose Graphics Processing (GPGPU) is a new technology that the Science and Technology (S&T) community is starting to adopt in many fields where CPU-based computing is the norm. GPGPU programming requires a new approach to algorithm development that utilizes massively multi-threaded environments. Multi-threaded algorithms in general are difficult to optimize since performance bottlenecks occur that are non-existent in single-threaded algorithms such as memory latencies. If an efficient GPU-based CT reconstruction algorithm can be developed; computational times could be improved by a factor of 20. Additionally, cost benefits will be realized as commodity graphics hardware could potentially replace expensive supercomputers and high-end workstations. This project will take advantage of the CUDA programming environment and attempt to parallelize the task in such a way that multiple slices of the reconstruction volume are computedmore » simultaneously. This work will also take advantage of the GPU memory by utilizing asynchronous memory transfers, GPU texture memory, and (when possible) pinned host memory so that the memory transfer bottleneck inherent to GPGPU is amortized. Additionally, this work will take advantage of GPU-specific hardware (i.e. fast texture memory, pixel-pipelines, hardware interpolators, and varying memory hierarchy) that will allow for additional performance improvements.« less
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States